• 1
    Ellmeier, W., Sawada, S. and Littman, D. R., The regulation of CD4 and CD8 coreceptor gene expression during T cell development. Annu. Rev. Immunol. 1999. 17: 523554.
  • 2
    Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. and Coffman, R. L., Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 1986. 136: 23482357.
  • 3
    Bluestone, J. A., Mackay, C. R., O'Shea, J. J. and Stockinger, B., The functional plasticity of T cell subsets. Nat. Rev. Immunol. 2009. 9: 811816.
  • 4
    Szabo, S. J., Kim, S. T., Costa, G. L., Zhang, X., Fathman, C. G. and Glimcher, L. H., A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000. 100: 655669.
  • 5
    Zheng, W. and Flavell, R. A., The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997. 89: 587596.
  • 6
    Sallusto, F. and Lanzavecchia, A., Heterogeneity of CD4+ memory T cells: functional modules for tailored immunity. Eur. J. Immunol. 2009. 39: 20762082.
  • 7
    Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A. and Weiner, H. L., Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994. 265: 12371240.
  • 8
    Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. and Toda, M., Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 1995. 155: 11511164.
  • 9
    Brunkow, M. E., Jeffery, E. W., Hjerrild, K. A., Paeper, B., Clark, L. B., Yasayko, S. A., Wilkinson, J. E. et al., Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 2001. 27: 6873.
  • 10
    Fontenot, J. D., Gavin, M. A. and Rudensky, A. Y., Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 2003. 4: 330336.
  • 11
    Hori, S., Nomura, T. and Sakaguchi, S., Control of regulatory T cell development by the transcription factor Foxp3. Science 2003. 299: 10571061.
  • 12
    Kitano, M., Moriyama, S., Ando, Y., Hikida, M., Mori, Y., Kurosaki, T., Okada, T., Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity. 2011. 34: 961972.
  • 13
    Langrish, C. L., Chen, Y., Blumenschein, W. M., Mattson, J., Basham, B., Sedgwick, J. D., McClanahan, T. et al., IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 2005. 201: 233240.
  • 14
    Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T. B., Oukka, M., Weiner, H. L. and Kuchroo, V. K., Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006. 441: 235238.
  • 15
    Mangan, P. R., Harrington, L. E., O'Quinn, D. B., Helms, W. S., Bullard, D. C., Elson, C. O., Hatton, R. D. et al., Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006. 441: 231234.
  • 16
    Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. and Stockinger, B., TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006. 24: 179189.
  • 17
    Ivanov, II., McKenzie, B. S., Zhou, L., Tadokoro, C. E., Lepelley, A., Lafaille, J. J., Cua, D. J. and Littman, D. R., The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006. 126: 11211133.
  • 18
    Yang, X. O., Pappu, B. P., Nurieva, R., Akimzhanov, A., Kang, H. S., Chung, Y., Ma, L. et al., T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008. 28: 2939.
  • 19
    Korn, T., Bettelli, E., Oukka, M. and Kuchroo, V. K., IL-17 and Th17 Cells. Annu. Rev. Immunol. 2009. 27: 485517.
  • 20
    Huppert, J., Closhen, D., Croxford, A., White, R., Kulig, P., Pietrowski, E., Bechmann, I. et al., Cellular mechanisms of IL-17-induced blood–brain barrier disruption. FASEB J. 2010. 24: 10231034.
  • 21
    Haak, S., Croxford, A. L., Kreymborg, K., Heppner, F. L., Pouly, S., Becher, B. and Waisman, A., IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J. Clin. Invest. 2009. 119: 6169.
  • 22
    Kroenke, M. A., Chensue, S. W. and Segal, B. M., EAE mediated by a non-IFN-gamma/non-IL-17 pathway. Eur. J. Immunol. 2010. 40: 23402348.
  • 23
    Codarri, L., Gyulveszi, G., Tosevski, V., Hesske, L., Fontana, A., Magnenat, L., Suter, T. and Becher, B., RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 2011. 12: 560567.
  • 24
    Ahern, P. P., Schiering, C., Buonocore, S., McGeachy, M. J., Cua, D. J., Maloy, K. J. and Powrie, F., Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 2010. 33: 279288.
  • 25
    Kurschus, F. C., Croxford, A. L., Heinen, A. P., Wortge, S., Ielo, D. and Waisman, A., Genetic proof for the transient nature of the Th17 phenotype. Eur. J. Immunol. 2010. 40: 33363346.
  • 26
    Hirota, K., Duarte, J. H., Veldhoen, M., Hornsby, E., Li, Y., Cua, D. J., Ahlfors, H. et al., Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 2011. 12: 255263.
  • 27
    Iwakura, Y. and Ishigame, H., The IL-23/IL-17 axis in inflammation. J. Clin. Invest. 2006. 116: 12181222.
  • 28
    Longbrake, E. E. and Racke, M. K., Why did IL-12/IL-23 antibody therapy fail in multiple sclerosis? Exp. Rev. Neurother. 2009. 9: 319321.
  • 29
    Krueger, G. G., Langley, R. G., Leonardi, C., Yeilding, N., Guzzo, C., Wang, Y., Dooley, L. T. and Lebwohl, M., A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis. N. Eng. J. Med. 2007. 356: 580592.
  • 30
    van der Fits, L., Mourits, S., Voerman, J. S., Kant, M., Boon, L., Laman, J. D., Cornelissen, F. et al., Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 2009. 182: 58365845.
  • 31
    Dumoutier, L., Louahed, J. and Renauld, J. C., Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J. Immunol. 2000. 164: 18141819.
  • 32
    Ouyang, W., Rutz, S., Crellin, N. K., Valdez, P. A. and Hymowitz, S. G., Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu. Rev. Immunol. 2011. 29: 71109.
  • 33
    Witte, E., Witte, K., Warszawska, K., Sabat, R. and Wolk, K., Interleukin-22: a cytokine produced by T, NK and NKT cell subsets, with importance in the innate immune defense and tissue protection. Cytokine Growth Factor Rev. 2010. 21: 365379.
  • 34
    Vanaudenaerde, B. M., Verleden, S. E., Vos, R., De Vleeschauwer, S. I., Willems-Widyastuti, A., Geenens, R., Van Raemdonck, D. E. et al., Innate and adaptive interleukin-17-producing lymphocytes in chronic inflammatory lung disorders. Am. J. Respir. Crit. Care Med. 2011. 183: 977986.
  • 35
    Kreymborg, K., Etzensperger, R., Dumoutier, L., Haak, S., Rebollo, A., Buch, T., Heppner, F. L. et al., IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J. Immunol. 2007. 179: 80988104.
  • 36
    Zheng, Y., Danilenko, D. M., Valdez, P., Kasman, I., Eastham-Anderson, J., Wu, J. and Ouyang, W., Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 2007. 445: 648651.
  • 37
    Fujita, H., Nograles, K. E., Kikuchi, T., Gonzalez, J., Carucci, J. A. and Krueger, J. G., Human Langerhans cells induce distinct IL-22-producing CD4+ T cells lacking IL-17 production. Proc. Natl. Acad. Sci. USA 2009. 106: 2179521800.
  • 38
    Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. and Sallusto, F., Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 2009. 10: 857863.
  • 39
    Eyerich, S., Eyerich, K., Pennino, D., Carbone, T., Nasorri, F., Pallotta, S., Cianfarani, F. et al., Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Invest. 2009. 119: 35733585.
  • 40
    Larsen, M., Arnaud, L., Hié, M., Parizot, C., Dorgham, K., Shoukry, M., Kemula, M. et al., Multiparameter grouping delineates heterogeneous populations of human IL-17 and/or IL-22 T-cell producers that share antigen specificities with other T-cell subsets. Eur. J. Immunol. 2011. 41: 25962605.
  • 41
    Stemberger, C., Huster, K. M., Koffler, M., Anderl, F., Schiemann, M., Wagner, H. and Busch, D. H., A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 2007. 27: 985997.