• 1
    Hogan, S. P., Rosenberg, H. F., Moqbel, R., Phipps, S., Foster, P. S., Lacy, P., Kay, A. B. and Rothenberg, M. E., Eosinophils: biological properties and role in health and disease. Clin. Exp. Allergy 2008. 38: 709750.
  • 2
    Rothenberg, M. E. and Hogan, S. P., The eosinophil. Annu. Rev. Immunol. 2006. 24: 147174.
  • 3
    Kita, H., Eosinophils: multifaceted biological properties and roles in health and disease. Immunol. Rev. 2011. 242: 161177.
  • 4
    Fabre, V., Beiting, D. P., Bliss, S. K., Gebreselassie, N. G., Gagliardo, L. F., Lee, N. A., Lee, J. J. and Appleton, J. A., Eosinophil deficiency compromises parasite survival in chronic nematode infection. J. Immunol. 2009. 182: 15771583.
  • 5
    Shamri, R., Xenakis, J. J. and Spencer,L. A., Eosinophils in innate immunity: an evolving story. Cell Tissue Res. 2011. 343: 5783.
  • 6
    Shinkai, K., Mohrs, M. and Locksley, R. M., Helper T cells regulate type-2 innate immunity in vivo. Nature 2002. 420: 825829.
  • 7
    Wang, H. B. and Weller, P. F., Pivotal advance: eosinophils mediate early alum adjuvant-elicited B cell priming and IgM production. J. Leukoc. Biol. 2008. 83: 817821.
  • 8
    Jordan, M. B., Mills, D. M., Kappler, J., Marrack, P. and Cambier, J. C., Promotion of B cell immune responses via an alum-induced myeloid cell population. Science 2004. 304: 18081810.
  • 9
    Chu, V. T., Frohlich, A., Steinhauser, G., Scheel, T., Roch, T., Fillatreau, S., Lee, J. J. et al., Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat. Immunol. 2011. 12: 151159.
  • 10
    Rumbley, C. A., Sugaya, H., Zekavat, S. A., El Refaei, M., Perrin, P. J. and Phillips, S. M., Activated eosinophils are the major source of Th2-associated cytokines in the schistosome granuloma. J. Immunol. 1999. 162: 10031009.
  • 11
    Spencer, L. A., Szela, C. T., Perez, S. A., Kirchhoffer, C. L., Neves, J. S., Radke, A. L. and Weller, P. F., Human eosinophils constitutively express multiple Th1, Th2, and immunoregulatory cytokines that are secreted rapidly and differentially. J. Leukoc. Biol. 2009. 85: 117123.
  • 12
    Moqbel, R., Ying, S., Barkans, J., Newman, T. M., Kimmitt, P., Wakelin, M., Taborda-Barata, L. et al., Identification of messenger RNA for IL-4 in human eosinophils with granule localization and release of the translated product. J. Immunol. 1995. 155: 49394947.
  • 13
    Melo, R. C., Spencer, L. A., Dvorak, A. M. and Weller, P. F., Mechanisms of eosinophil secretion: large vesiculotubular carriers mediate transport and release of granule-derived cytokines and other proteins. J. Leukoc. Biol. 2008. 83: 229236.
  • 14
    Yousefi, S., Gold, J. A., Andina, N., Lee, J. J., Kelly, A. M., Kozlowski, E., Schmid, I. et al., Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat. Med. 2008. 14: 949953.
  • 15
    Nakajima, H., Gleich, G. J. and Kita, H., Constitutive production of IL-4 and IL-10 and stimulated production of IL-8 by normal peripheral blood eosinophils. J. Immunol. 1996. 156: 48594866.
  • 16
    McKee, A. S., Munks, M. W., MacLeod, M. K., Fleenor, C. J., Van Rooijen, N., Kappler, J. W. and Marrack, P., Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J. Immunol. 2009. 183: 44034414.
  • 17
    Yip, H. C., Karulin, A. Y., Tary-Lehmann, M., Hesse, M. D., Radeke, H., Heeger, P. S., Trezza, R. P. et al., Adjuvant-guided type-1 and type-2 immunity: infectious/noninfectious dichotomy defines the class of response. J. Immunol. 1999. 162: 39423949.
  • 18
    Marrack, P., McKee, A. S. and Munks, M. W., Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 2009. 9: 287293.
  • 19
    Spreafico, R., Ricciardi-Castagnoli, P. and Mortellaro, A., The controversial relationship between NLRP3, alum, danger signals and the next-generation adjuvants. Eur. J. Immunol. 2010. 40: 638642.
  • 20
    Park, Y. M. and Bochner, B. S., Eosinophil survival and apoptosis in health and disease. Allergy Asthma Immunol. Res. 2010. 2: 87101.
  • 21
    Tokoyoda, K., Zehentmeier, S., Hegazy, A. N., Albrecht, I., Grun, J. R., Lohning, M. and Radbruch, A., Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity 2009. 30: 721730.
  • 22
    Sanderson, C. J., Interleukin-5, eosinophils, and disease. Blood 1992. 79: 31013109.
  • 23
    Bartemes, K. R., Cooper, K. M., Drain, K. L. and Kita, H., Secretory IgA induces antigen-independent eosinophil survival and cytokine production without inducing effector functions. J. Allergy Clin. Immunol. 2005. 116: 827835.
  • 24
    Kim, J. T., Schimming, A. W. and Kita, H., Ligation of Fc gamma RII (CD32) pivotally regulates survival of human eosinophils. J. Immunol. 1999. 162: 42534259.
  • 25
    Nagase, H., Miyamasu, M., Yamaguchi, M., Fujisawa,T., Ohta, K., Yamamoto,K., Morita, Y. and Hirai, K., Expression of CXCR4 in eosinophils: functional analyses and cytokine-mediated regulation. J. Immunol. 2000. 164: 59355943.
  • 26
    Cassese, G., Arce, S., Hauser, A. E., Lehnert, K., Moewes, B., Mostarac, M., Muehlinghaus, G. et al., Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals. J. Immunol. 2003. 171: 16841690.
  • 27
    Chu, V. T., Enghard, P., Riemekasten, G. and Berek, C., In vitro and in vivo activation induces BAFF and APRIL expression in B cells. J. Immunol. 2007. 179: 59475957.
  • 28
    Lee, J. J., McGarry, M. P., Farmer, S. C., Denzler, K. L., Larson, K. A., Carrigan, P. E., Brenneise, I. E. et al., Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. J. Exp. Med. 1997. 185: 21432156.
  • 29
    Chu, V. T., Enghard, P., Schurer, S., Steinhauser, G., Rudolph, B., Riemekasten, G. and Berek,C., Systemic activation of the immune system induces aberrant BAFF and APRIL expression in B cells in patients with systemic lupus erythematosus. Arthritis Rheum. 2009. 60: 20832093.