SEARCH

SEARCH BY CITATION

References

  • 1
    Breitfeld, D., Ohl, L., Kremmer, E., Ellwart, J., Sallusto, F., Lipp, M. and Förster, R., Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 2000. 192: 15451552.
  • 2
    Schaerli, P., Willimann, K., Lang, A. B., Lipp, M., Loetscher, P. and Moser, B., CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 2000. 192: 15531562.
  • 3
    Vinuesa, C. G., Tangye, S. G., Moser, B. and Mackay, C. R., Follicular B helper T cells in antibody responses and autoimmunity. Nat. Rev. Immunol. 2005. 5: 853865.
  • 4
    Fazilleau, N., Mark, L., McHeyzer-Williams, L. J. and McHeyzer-Williams, M. G., Follicular helper T cells: lineage and location. Immunity 2009. 30: 324335.
  • 5
    King, C., New insights into the differentiation and function of T follicular helper cells. Nat. Rev. Immunol. 2009. 9: 757766.
  • 6
    Nurieva, R. I. and Chung, Y., Understanding the development and function of T follicular helper cells. Cell. Mol. Immunol. 2010. 7: 190197.
  • 7
    Crotty, S., Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 2011. 29: 621663.
  • 8
    Brandes, M., Willimann, K., Lang, A. B., Nam, K. H., Jin, C., Brenner, M. B., Morita, C. T. and Moser, B., Flexible migration program regulates γδ T-cell involvement in humoral immunity. Blood 2003. 102: 36933701.
  • 9
    Galli, G., Nuti, S., Tavarini, S., Galli-Stampino, L., De Lalla, C., Casorati, G., Dellabona, P. et al., CD1d-restricted help to B cells by human invariant natural killer T lymphocytes. J. Exp. Med. 2003. 197: 10511057.
  • 10
    Quigley, M. F., Gonzalez, V. D., Granath, A., Andersson, J. and Sandberg, J. K., CXCR5+ CCR7 CD8 T cells are early effector memory cells that infiltrate tonsil B cell follicles. Eur. J. Immunol. 2007. 37: 33523362.
  • 11
    McMenamin, C., Pimm, C., McKersey, M. and Holt, P. G., Regulation of IgE responses to inhaled antigen in mice by antigen-specific γδ T cells. Science 1994. 265: 18691871.
  • 12
    Wen, L. and Hayday, A. C., γδ T-cells help in responses to pathogens and in the development of systemic autoimmunity. Immunol. Res. 1997. 16: 229241.
  • 13
    Huang, Y., Jin, N., Roark, C. L., Aydintug, M. K., Wands, J. M., Huang, H., O'Brien, R. L. and Born, W. K., The influence of IgE-enhancing and IgE-suppressive γδ T cells changes with exposure to inhaled ovalbumin. J. Immunol. 2009. 183: 849855.
  • 14
    Pao, W., Wen, L., Smith, A. L., Gulbranson-Judge, A., Zheng, B., Kelsoe, G., MacLennan, I. C. et al., γδ T cell help of B cells is induced by repeated parasitic infection, in the absence of other T cells. Curr. Biol. 1996. 6: 13171325.
  • 15
    Dianda, L., Gulbranson-Judge, A., Pao, W., Hayday, A. C., MacLennan, I. C. and Owen, M. J., Germinal center formation in mice lacking αβ T cells. Eur. J. Immunol. 1996. 26: 16031607.
  • 16
    Wen, L., Pao, W., Wong, F. S., Peng, Q., Craft, J., Zheng, B., Kelsoe, G. et al., Germinal center formation, immunoglobulin class switching, and autoantibody production driven by ‘non α/β’ T cells. J. Exp. Med. 1996. 183: 22712282.
  • 17
    Groh, V., Porcelli, S., Fabbi, M., Lanier, L. L., Picker, L. J., Anderson, T., Warnke, R. A. et al., Human lymphocytes bearing T cell receptor γ/δ are phenotypically diverse and evenly distributed throughout the lymphoid system. J. Exp. Med. 1989. 169: 12771294.
  • 18
    Dieli, F., Poccia, F., Lipp, M., Sireci, G., Caccamo, N., Di Sano, C. and Salerno, A., Differentiation of effector/memory Vδ2 T cells and migratory routes in lymph nodes or inflammatory sites. J. Exp. Med. 2003. 198: 391397.
  • 19
    Rajagopalan, S., Zordan, T., Tsokos, G. C. and Datta, S. K., Pathogenic anti-DNA autoantibody-inducing T helper cell lines from patients with active lupus nephritis: isolation of CD48 T helper cell lines that express the γδ T-cell antigen receptor. Proc. Natl. Acad. Sci. USA 1990. 87: 70207024.
  • 20
    Caccamo, N., Battistini, L., Bonneville, M., Poccia, F., Fournié, J. J., Meraviglia, S., Borsellino, G. et al., CXCR5 identifies a subset of Vγ9Vδ2 T cells which secrete IL-4 and IL-10 and help B cells for antibody production. J. Immunol. 2006. 177: 52905295.
  • 21
    DeBarros, A., Chaves-Ferreira, M., d'Orey, F., Ribot, J. C. and Silva-Santos, B., CD70–CD27 interactions provide survival and proliferative signals that regulate T cell receptor-driven activation of human γδ peripheral blood lymphocytes. Eur. J. Immunol. 2011. 41: 195201.
  • 22
    Iwasaki, M., Tanaka, Y., Kobayashi, H., Murata-Hirai, K., Miyabe, H., Sugie, T., Toi, M. et al., Expression and function of PD-1 in human γδ T cells that recognize phosphoantigens. Eur. J. Immunol. 2011. 41: 345355.
  • 23
    Caccamo, N., Dieli, F., Wesch, D., Jomaa, H. and Eberl, M., Sex-specific phenotypical and functional differences in peripheral human Vγ9/Vδ2 T cells. J. Leukoc. Biol. 2006. 79: 663666.
  • 24
    Davey, M. S., Lin, C. Y., Roberts, G. W., Heuston, S., Brown, A. C., Chess, J. A., Toleman, M. A. et al., Human neutrophil clearance of bacterial pathogens triggers anti-microbial γδ T cell responses in early infection. PLoS Pathog. 2011. 7: e1002040.
  • 25
    Eberl, M. and Moser, B., Monocytes and γδ T cells: close encounters in microbial infection. Trends Immunol. 2009. 30: 562568.
  • 26
    Sireci, G., Champagne, E., Fournié, J. J., Dieli, F. and Salerno, A., Patterns of phosphoantigen stimulation of human Vγ9/Vδ2 T cell clones include Th0 cytokines. Hum. Immunol. 1997. 58: 7082.
  • 27
    Vermijlen, D., Ellis, P., Langford, C., Klein, A., Engel, R., Willimann, K., Jomaa, H. et al., Distinct cytokine-driven responses of activated blood γδ T cells: insights into unconventional T cell pleiotropy. J. Immunol. 2007. 178: 43044314.
  • 28
    Eberl, M., Roberts, G. W., Meuter, S., Williams, J. D., Topley, N. and Moser, B., A rapid crosstalk of human γδ T cells and monocytes drives the acute inflammation in bacterial infections. PLoS Pathog. 2009. 5: e1000308.
  • 29
    Wesch, D., Glatzel, A. and Kabelitz, D., Differentiation of resting human peripheral blood γδ T cells toward Th1- or Th2-phenotype. Cell. Immunol. 2001. 212: 110117.
  • 30
    Ness-Schwickerath, K. J., Jin, C. and Morita, C. T., Cytokine requirements for the differentiation and expansion of IL-17A- and IL-22-producing human Vγ2Vδ2 T cells. J. Immunol. 2010. 184: 72687280.
  • 31
    Caccamo, N., La Mendola, C., Orlando, V., Meraviglia, S., Todaro, M., Stassi, G., Sireci, G. et al., Differentiation, phenotype and function of interleukin-17-producing human Vγ9Vδ2 T cells. Blood 2011. 118: 129138.
  • 32
    Casetti, R., Agrati, C., Wallace, M., Sacchi, A., Martini, F., Martino, A., Rinaldi, A. et al., TGF-β1 and IL-15 induce FOXP3+ γδ regulatory T cells in the presence of antigen stimulation. J. Immunol. 2009. 183: 35743577.
  • 33
    Brandes, M., Willimann, K. and Moser, B., Professional antigen-presentation function by human γδ T cells. Science 2005. 309: 264268.
  • 34
    Chtanova, T., Tangye, S. G., Newton, R., Frank, N., Hodge, M. R., Rolph, M. S. and Mackay, C. R., T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J. Immunol. 2004. 173: 6878.
  • 35
    Vogelzang, A., McGuire, H. M., Yu, D., Sprent, J., Mackay, C. R. and King, C., A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 2008. 29: 127137.
  • 36
    Förster, R., Emrich, T., Kremmer, E. and Lipp, M., Expression of the G-protein-coupled receptor BLR1 defines mature, recirculating B cells and a subset of T-helper memory cells. Blood 1994. 84: 830840.
  • 37
    Rasheed, A. U., Rahn, H. P., Sallusto, F., Lipp, M. and Müller, G., Follicular B helper T cell activity is confined to CXCR5hiICOShi CD4 T cells and is independent of CD57 expression. Eur. J. Immunol. 2006. 36: 18921903.
  • 38
    Akiba, H., Takeda, K., Kojima, Y., Usui, Y., Harada, N., Yamazaki, T., Ma, J. et al., The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J. Immunol. 2005. 175: 23402348.
  • 39
    Ostiguy, V., Allard, E. L., Marquis, M., Leignadier, J. and Labrecque, N., IL-21 promotes T lymphocyte survival by activating the phosphatidylinositol-3 kinase signaling cascade. J. Leukoc. Biol. 2007. 82: 645656.
  • 40
    Shimura, E., Hozumi, N., Kanagawa, O., Metzger, D., Chambon, P., Radtke, F., Hirose, S. and Nakano, N., Epidermal γδ T cells sense precancerous cellular dysregulation and initiate immune responses. Int. Immunol. 2010. 22: 329340.
  • 41
    Eberl, M., Altincicek, B., Kollas, A. K., Sanderbrand, S., Bahr, U., Reichenberg, A., Beck, E. et al., Accumulation of a potent γδ T-cell stimulator after deletion of the lytB gene in Escherichia coli. Immunology 2002. 106: 200211.
  • 42
    Bryant, V. L., Ma, C. S., Avery, D. T., Li, Y., Good, K. L., Corcoran, L. M., de Waal Malefyt, R. et al., Cytokine-mediated regulation of human B cell differentiation into Ig-secreting cells: predominant role of IL-21 produced by CXCR5+ T follicular helper cells. J. Immunol. 2007. 179: 81808190.
  • 43
    Linterman, M. A., Beaton, L., Yu, D., Ramiscal, R. R., Srivastava, M., Hogan, J. J., Verma, N. K. et al., IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J. Exp. Med. 2010. 207: 353363.
  • 44
    Wen, L., Roberts, S. J., Viney, J. L., Wong, F. S., Mallick, C., Findly, R. C., Peng, Q. et al., Immunoglobulin synthesis and generalized autoimmunity in mice congenitally deficient in αβ(+) T cells. Nature 1994. 369: 654658.
  • 45
    Begley, M., Gahan, C. G., Kollas, A. K., Hintz, M., Hill, C., Jomaa, H. and Eberl, M., The interplay between classical and alternative isoprenoid biosynthesis controls γδ T cell bioactivity of Listeria monocytogenes. FEBS Lett. 2004. 561: 99104.
  • 46
    Brown, A. C., Eberl, M., Crick, D. C., Jomaa, H. and Parish, T., The nonmevalonate pathway of isoprenoid biosynthesis in Mycobacterium tuberculosis is essential and transcriptionally regulated by Dxs. J. Bacteriol. 2010. 192: 24242433.
  • 47
    Moser, B. and Eberl, M., γδ T-APCs: a novel tool for immunotherapy? Cell. Mol. Life Sci. 2011. 68: 24432452.
  • 48
    Strid, J., Tigelaar, R. E. and Hayday, A. C., Skin immune surveillance by T cells – a new order? Semin. Immunol. 2009. 21: 110120.
  • 49
    Cendron, D., Ingoure, S., Martino, A., Casetti, R., Horand, F., Romagné, F., Sicard, H. et al., A tuberculosis vaccine based on phosphoantigens and fusion proteins induces distinct γδ and αβ T cell responses in primates. Eur. J. Immunol. 2007. 37: 549565.
  • 50
    Sallusto, F., Lenig, D., Förster, R., Lipp, M. and Lanzavecchia, A., Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999. 401: 708712.
  • 51
    Reichenberg, A., Hintz, M., Kletschek, Y., Kuhl, T., Haug, C., Engel, R., Moll, J. et al., Replacing the pyrophosphate group of HMB-PP by a diphosphonate function abrogates its potential to activate human γδ T cells but does not lead to competitive antagonism. Bioorg. Med. Chem. Lett. 2003. 13: 12571260.