• 1
    World Health Organisation. WHO fact file: 10 facts about tuberculosis 2009.
  • 2
    Hunter, R., Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis 2011. 91: 497509.
  • 3
    Shende, N., Gutpa, S., Upadhye, V., Kumar, S. and Harinth, B., Isolation and analysis of circulating tuberculous antigens in Mycobacterium tuberculosis. Indian J. Tuberc. 2007. 54: 125129.
  • 4
    Huygen, K., Van Vooren, J., Turneer, M., Bosmans, R., Dierckx, P. and De Bruyn, J., Specific lymphoproliferation, gamma interferon production, and serum immunoglobulin G directed against a purified 32 kDa mycobacterial protein antigen (P32) in patients with active tuberculosis. Scand. J. Immunol. 1988. 27: 187194.
  • 5
    Demissie, A., Ravn, P., Olobo, J., Doherty, T. M., Eguale, T., Geletu, M. et al., T-cell recognition of Mycobacterium tuberculosis culture filtrate fractions in tuberculosis patients and their household contacts. Infect. Immun. 1999. 67: 59675971.
  • 6
    Kamath, A. B., Alt, J. M., Debbabi, H., Taylor, C. and Behar, S. M., The major histocompatibility haplotype affects T-cell recognition of mycobacterial antigens but not resistance to Mycobacterium tuberculosis in C3H mice. Infect. Immun. 2004. 72: 67906798.
  • 7
    Beamer, G., Cyktor, J., Carruthers, B. and Turner, J., H-2 alleles contribute to Antigen 85-specific interferon-gamma responses during Mycobacterium tuberculosis infection. Cell. Immunol. 2011. 271: 5361.
  • 8
    Whelan, K. T., Pathan, A. A., Sander, C. R., Fletcher, H. A., Poulton, I., Alder, N. C., Hill, A. V. S. et al., Safety and immunogenicity of boosting BCG vaccinated subjects with BCG: comparison with boosting with a new TB vaccine, MVA85A. PLoS One 2009. 4: e5934.
  • 9
    Medina, E. and North, R. J., Resistance ranking of some common inbred mouse strains to Mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and Nramp1 genotype. Immunol. 1998. 93: 270274.
  • 10
    Turner, J., Gonzalez-Juarrero, M., Saunders, B. M., Brooks, J. V., Marietta, P., Ellis, D. L., Frank, A. A. et al., Immunological basis for reactivation of tuberculosis in mice. Infect. Immun. 2001. 69: 32643270.
  • 11
    Beamer, G. L., Flaherty, D. K., Vesosky, B. and Turner, J., Peripheral blood interferon-{gamma} release assays predict lung responses and Mycobacterium tuberculosis disease outcome in mice. Clin. Vacc. Immunol. 2008. 15: 474483.
  • 12
    Rogerson, B. J., Jung, Y.-J., LaCourse, R., Ryan, L., Enright, N. and North, R. J., Expression levels of Mycobacterium tuberculosis antigen-encoding genes versus production levels of antigen-specific T cells during stationary level lung infection in mice. Immunology 2006. 118: 195201.
  • 13
    Dietrich, J., Aagaard, C., Leah, R., Olsen, A. W., Stryhn, A., Doherty, T. M. and Andersen, P., Exchanging ESAT6 with TB10.4 in an Ag85B fusion molecule-based tuberculosis subunit vaccine: efficient protection and ESAT6-based sensitive monitoring of vaccine efficacy. J. Immunol. 2005. 174: 63326339.
  • 14
    Romano, M., Roupie, V., Wang, X., Denis, M., Jurion, F., Adnet, P.-Y., Laali, R. et al., Immunogenicity and protective efficacy of tuberculosis DNA vaccines combining mycolyl-transferase Ag85A and phosphate transport receptor Pst-3. Immunology 2006. 118: 321332.
  • 15
    Medina, E. and North, R., Genetically susceptible mice remain proportionally more susceptible to tuberculosis after vaccination. Immunology 1999. 96: 1621.
  • 16
    Dannenberg, A. M., Jr., Perspectives on clinical and preclinical testing of new tuberculosis vaccines. Clin. Microbiol. Rev. 2010. 23: 781794.
  • 17
    Wiker, H. G. and Harboe, M., The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis. Microbiol. Mol. Biol. Rev. 1992. 56: 648661.
  • 18
    van Dissel, J. T., Arend, S. M., Prins, C., Bang, P., Tingskov, P. N., Lingnau, K., Nouta, J. et al., Ag85B-ESAT-6 adjuvanted with IC31® promotes strong and long-lived Mycobacterium tuberculosis specific T-cell responses in naïve human volunteers. Vaccine 2010. 28: 35713581.
  • 19
    D'Souza, S., Rosseels, V., Romano, M., Tanghe, A., Denis, O., Jurion, F., Castiglione, N. et al., Mapping of murine Th1 helper T-cell epitopes of mycolyl transferases Ag85A, Ag85B, and Ag85C from Mycobacterium tuberculosis. Infect. Immun. 2003. 71: 483493.
  • 20
    Lozes, E., Huygen, K., Content, J., Denis, O., Montgomery, D. L., Yawman, A. M., Vandenbussche, P. et al., Immunogenicity and efficacy of a tuberculosis DNA vaccine encoding the components of the secreted antigen 85 complex. Vaccine 1997. 15: 830833.
  • 21
    Ulmer, J. B., Liu, M. A., Montgomery, D. L., Yawman, A. M., Randall Deck, R., DeWitt, C. M., Content, J. et al., Expression and immunogenicity of Mycobacterium tuberculosis antigen 85 by DNA vaccination. Vaccine 1997. 15: 792794.
  • 22
    Duffy, D., Dawoodji, A., Agger, E., Andersen, P., Westermann, J. and Bell, E., Immunological memory transferred with CD4 T cells specific for tuberculosis Ag85B-TB10.4: persisting antigen enhances protection. PLoS One 2009. 4: e8272.
  • 23
    Bennekov, T., Dietrich, J., Rosenkrands, I., Stryhn, A., Doherty, T. â. M. and Andersen, P., Alteration of epitope recognition pattern in Ag85B and ESAT-6 has a profound influence on vaccine-induced protection against Mycobacterium tuberculosis. Eur. J. Immunol. 2006. 36: 33463355.
  • 24
    Dietrich, J., Andersen, C., Rappuoli, R., Doherty, T. M., Jensen, C. G. and Andersen, P., Mucosal administration of Ag85B-ESAT-6 protects against infection with Mycobacterium tuberculosis and boosts prior bacillus Calmette-Guerin immunity. J. Immunol. 2006. 177: 63536360.
  • 25
    Giri, P. K., Verma, I. and Khuller, G. K., Enhanced immunoprotective potential of Mycobacterium tuberculosisAg85 complex protein based vaccine against airway Mycobacterium tuberculosis challenge following intranasal administration. FEMS Immunol. Med. Microbiol. 2006. 47: 233241.
  • 26
    Malowany, J., McCormick, S., Santosuosso, M., Xizhong, Z., Aoki, N., Ngai, P., Wang, J., et al., Development of cell-based tuberculosis vaccines: genetically modified dendritic cell vaccine is a much more potent activator of CD4 and CD8 T cells than peptide- or protein-loaded counterparts. Mol. Ther. 2006. 13: 766774.
  • 27
    Langermans, J. A. M., Doherty, T. M., Vervenne, R. A. W., Laan, T. V. d., Lyashchenko, K., Greenwald, R., Agger, E. M. et al., Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine 2005. 23: 27402750.
  • 28
    Horwitz, M., Harth, G., Dillon, B. and Maslesa-Galic, S., Recombinant bacillus Calmette-Guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory product induce greater protective immunity in a highly susceptible animal model. Proc. Nat. Acad. Sci. USA 2000. 97: 1385313858.
  • 29
    McShane, H., Pathan, A. A., Sander, C. R., Goonetilleke, N. P., Fletcher, H. A. and Hill, A. V. S., Boosting BCG with MVA85A: the first candidate subunit vaccine for tuberculosis in clinical trials. Tuberculosis 2005. 85: 4752.
  • 30
    González-Juarrero, M., Turner, J., Basaraba, R. J., Belisle, J. T. and Orme, I. M., Florid pulmonary inflammatory responses in mice vaccinated with Antigen-85 pulsed dendritic cells and challenged by aerosol with Mycobacterium tuberculosis. Cell. Imunol. 2002. 220: 1319.
  • 31
    Taylor, J., Turner, O., Basaraba, R., Belisle, J., Huygen, K. and Orme, I., Pulmonary necrosis resulting from DNA vaccination against tuberculosis. Infect. Immun. 2003. 71: 21922198.
  • 32
    D'Souza, S., Denis, O., Scorza, T., Nzabintwali, F., Verschueren, H. and Huygen, K., CD4+ T cells contain Mycobacterium tuberculosis infection in the absence of CD8+ T cells in mice vaccinated with DNA encoding Ag85A. Eur. J. Immunol. 2000. 30: 24552499.
  • 33
    Turner, J., Rhoades, E., Keen, M., Belisle, J., Frank, A. and Orme, I., Effective pre-exposure tuberculosis vaccines fail to protect when they are given in an immunotherapeutic mode. Infect. Immun. 2000. 68: 17061709.
  • 34
    Beamer, G. L., Flaherty, D. K., Assogba, B. D., Stromberg, P., Gonzalez-Juarrero, M., de Waal Malefyt, R., Vesosky, B. et al., Interleukin-10 promotes Mycobacterium tuberculosis disease progression in CBA/J mice. J. Immunol. 2008. 181: 55455550.
  • 35
    Andersen, P., Effective vaccination of mice against Mycobacterium tuberculosis infection with a soluble mixture of secreted mycobacterial proteins. Infect. Immun. 1994. 62: 25362544.
  • 36
    Hubbard, R. D., Flory, C. M. and Collins, F. M., Memory T cell-mediated resistance to Mycobacterium tuberculosis infection in innately susceptible and resistant mice. Infect. Immun. 1991. 59: 20122016.
  • 37
    Buccheri, S., Reljic, R., Caccamo, N., Meraviglia, S., Ivanyi, J., Salerno, A. and Dieli, F., Prevention of the post-chemotherapy relapse of tuberculous infection by combined immunotherapy. Tuberculosis 2009. 89: 9194.
  • 38
    Cynamon, M., Sklaney, M. R. and Shoen, C., Gatifloxacin in combination with rifampicin in a murine tuberculosis model. J. Antimicrob. Chemother. 2007. 60: 429432.
  • 39
    Cardona, P.-J., Amat, I., Gordillo, S., Arcos, V., Guirado, E., Díaz, J., Vilaplana, C. et al., Immunotherapy with fragmented Mycobacterium tuberculosis cells increases the effectiveness of chemotherapy against a chronical infection in a murine model of tuberculosis. Vaccine 2005. 23: 13931398.
  • 40
    Bachmanov, A. A., Reed, D. R., Beauchamp, G. K. and Tordoff, M. G., Food Intake, Water Intake, and Drinking Spout Side Preference of 28 Mouse Strains Behavior Genetics. Springer, the Netherlands, 2002. 32: pp. 435443.
  • 41
    Biancifiori, C. and Severi, L., The relation of isoniazid (INH) and allied compounds to carcinogenesis in some species of small laboratory animals: a review. Br. J. Cancer 1966. 20: 528538.
  • 42
    Grosset, J. and Leventis, S., Adverse effects of rifampin. Rev. Infect. Dis. 1983. 3(Suppl): S440S450.
  • 43
    Vesosky, B., Flaherty, D. K., Rottinghaus, E. K., Beamer, G. L. and Turner, J., Age dependent increase in early resistance of mice to Mycobacterium tuberculosis is associated with an increase in CD8 T cells that are capable of antigen independent IFN-gamma production. Expt. Gerontol. 2006. 41: 11851194.
  • 44
    Hurwitz, A. A., Yu, T. F.-Y., Leach, D. R. and Allison, J., P., CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc. Nat. Acad. Sci. USA 1998. 95: 1006710071.
  • 45
    Vesosky, B., Rottinghaus, E. K., Stromberg, P., Turner, J. and Beamer, G., CCL5 participates in early protection against Mycobacterium tuberculosis. J. Leuk. Biol. 2010. 87: 11531165.
  • 46
    Gonzalez-Juarrero, M., Shim, T. S., Kipnis, A., Junqueira-Kipnis, A. P. and Orme, I. M., Dynamics of macrophage cell populations during murine pulmonary tuberculosis. J. Immunol. 2003. 171: 31283135.