• 1
    Wang, J. W., Howson, J. M., Ghansah, T., Desponts, C., Ninos, J. M., May, S. L., Nguyen, K. H. et al., Influence of SHIP on the NK repertoire and allogeneic bone marrow transplantation. Science 2002. 295: 20942097.
  • 2
    Ghansah, T., Paraiso, K. H., Highfill, S., Desponts, C., May, S., McIntosh, J. K., Wang, J. W. et al., Expansion of myeloid suppressor cells in SHIP-deficient mice represses allogeneic T-cell responses. J. Immunol. 2004. 173: 73247330.
  • 3
    Paraiso, K. H., Ghansah, T., Costello, A., Engelman, R. W. and Kerr, W. G., Induced SHIP deficiency expands myeloid regulatory cells and abrogates graft-versus-host disease. J. Immunol. 2007. 178: 28932900.
  • 4
    Collazo, M. M., Wood, D., Paraiso, K. H., Lund, E., Engelman, R. W., Le, C. T., Stauch, D. et al., SHIP limits immunoregulatory capacity in the T-cell compartment. Blood 2009. 113: 29342944.
  • 5
    Lafferty, K. J., Prowse, S. J., Babcock, S. and Gill, R., The allograft response. Surg. Clin. North Am. 1986. 66: 12311253.
  • 6
    Shlomchik, W. D., Couzens, M. S., Tang, C. B., McNiff, J., Robert, M. E., Liu, J., Shlomchik, M. J. et al., Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 1999. 285: 412415.
  • 7
    Kosaka, H., Surh, C. D. and Sprent, J., Stimulation of mature unprimed CD8+T cells by semiprofessional antigen-presenting cells in vivo. J. Exp. Med. 1992. 176: 12911302.
  • 8
    Steinman, R. M., Gutchinov, B., Witmer, M. D. and Nussenzweig, M. C., Dendritic cells are the principal stimulators of the primary mixed leukocyte reaction in mice. J. Exp. Med. 1983. 157: 613627.
  • 9
    Taylor, P. A., Lees, C. J. and Blazar, B. R., The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 2002. 99: 34933499.
  • 10
    Edinger, M., Hoffmann, P., Ermann, J., Drago, K., Fathman, C. G., Strober, S. and Negrin, R. S., CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat. Med. 2003. 9: 11441150.
  • 11
    Kingsley, C. I., Karim, M., Bushell, A. R. and Wood, K. J., CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J. Immunol. 2002. 168: 10801086.
  • 12
    Helgason, C. D., Damen, J. E., Rosten, P., Grewal, R., Sorensen, P., Chappel, S. M., Borowski, A. et al., Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev. 1998. 12: 16101620.
  • 13
    Liu, Q., Sasaki, T., Kozieradzki, I., Wakeham, A., Itie, A., Dumont, D. J. and Penninger, J. M., SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid cell survival. Genes Dev. 1999. 13: 786791.
  • 14
    Karlsson, M. C., Guinamard, R., Bolland, S., Sankala, M., Steinman, R. M. and Ravetch, J. V., Macrophages control the retention and trafficking of B lymphocytes in the splenic marginal zone. J. Exp. Med. 2003. 198: 333340.
  • 15
    Huber, M., Helgason, C. D., Scheid, M. P., Duronio, V., Humphries, R. K. and Krystal, G., Targeted disruption of SHIP leads to Steel factor-induced degranulation of mast cells. EMBO J. 1998. 17: 73117319.
  • 16
    Takeshita, S., Namba, N., Zhao, J. J., Jiang, Y., Genant, H. K., Silva, M. J., Brodt, M. D. et al., SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat. Med. 2002. 8: 943949.
  • 17
    Kalesnikoff, J., Baur, N., Leitges, M., Hughes, M. R., Damen, J. E., Huber, M. and Krystal, G., SHIP negatively regulates IgE+ antigen-induced IL-6 production in mast cells by inhibiting NF-kappa B activity. J. Immunol. 2002. 168: 47374746.
  • 18
    Kalesnikoff, J., Lam, V. and Krystal, G., SHIP represses masT-cell activation and reveals that IgE alone triggers signaling pathways which enhance normal masT-cell survival. Mol. Immunol. 2002. 38: 1201.
  • 19
    Wahle, J. A., Paraiso, K. H., Costello, A. L., Goll, E. L., Sentman, C. L. and Kerr, W. G., Cutting edge: dominance by an MHC-independent inhibitory receptor compromises NK killing of complex targets. J. Immunol. 2006. 176: 71657169.
  • 20
    Wahle, J. A., Paraiso, K. H., Kendig, R. D., Lawrence, H. R., Chen, L., Wu, J. and Kerr, W. G., Inappropriate recruitment and activity by the Src homology region 2 domain-containing phosphatase 1 (SHP1) is responsible for receptor dominance in the SHIP-deficient NK cell. J. Immunol. 2007. 179: 80098015.
  • 21
    Hazen, A. L., Smith, M. J., Desponts, C., Winter, O., Moser, K. and Kerr, W. G., SHIP is required for a functional hematopoietic stem cell niche. Blood 2009. 113: 29242933.
  • 22
    Kuroda, E., Ho, V., Ruschmann, J., Antignano, F., Hamilton, M., Rauh, M. J., Antov, A. et al., SHIP represses the generation of IL-3-induced M2 macrophages by inhibiting IL-4 production from basophils. J. Immunol. 2009. 183: 36523660.
  • 23
    Helgason, C. D., Antonchuk, J., Bodner, C. and Humphries, R. K., Homeostasis and regeneration of the hematopoietic stem cell pool is altered in SHIP-deficient mice. Blood 2003. 102: 3541–3547.
  • 24
    Desponts, C., Hazen, A. L., Paraiso, K. H. and Kerr, W. G., SHIP deficiency enhances HSC proliferation and survival but compromises homing and repopulation. Blood 2006. 107: 43384345.
  • 25
    Helgason, C. D., Kalberer, C. P., Damen, J. E., Chappel, S. M., Pineault, N., Krystal, G. and Humphries, R. K., A dual role for Src homology 2 domain-containing inositol-5-phosphatase (SHIP) in immunity: aberrant development and enhanced function of b lymphocytes in ship -/- mice. J. Exp. Med. 2000. 191: 781794.
  • 26
    Peng, Q., Malhotra, S., Torchia, J., Kerr, W. G., Coggeshall, K. M. and Humphrey, M. B., TREM2- and DAP12-dependent activation of PI3K requires DAP10 and is inhibited by SHIP1. Sci. Signal. 2010. 3: ra38.
  • 27
    Fortenbery, N. R., Paraiso, K. H. T., Ibrahim, L., Taniguchi, M., Colin Brooks, C. and Kerr, W. G., SHIP influences signals from CD48 and MHC-I ligands that regulate NK cell homeostasis, effector function and repertoire formation. J. Immunol. 2010. 184: 50655074.
  • 28
    Tiwari, S., Choi, H. P., Matsuzawa, T., Pypaert, M. and MacMicking, J. D., Targeting of the GTPase Irgm1 to the phagosomal membrane via PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) promotes immunity to mycobacteria. Nat. Immunol. 2009. 10: 907917.
  • 29
    Brooks, R., Fuhler, G. M., Iyer, S., Smith, M. J., Park, M. Y., Paraiso, K. H., Engelman, R. W. et al., SHIP1 inhibition increases immunoregulatory capacity and triggers apoptosis of hematopoietic cancer cells. J. Immunol. 2010. 184: 35823589.
  • 30
    Ivetac, I., Gurung, R., Hakim, S., Horan, K. A., Sheffield, D. A., Binge, L. C., Majerus, P. W. et al., Regulation of PI(3)K/Akt signalling and cellular transformation by inositol polyphosphate 4-phosphatase-1. EMBO Rep. 2009. 10: 487493.
  • 31
    Gewinner, C., Wang, Z. C., Richardson, A., Teruya-Feldstein, J., Etemadmoghadam, D., Bowtell, D., Barretina, J. et al., Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 2009. 16: 115125.
  • 32
    Clausen, B. E., Burkhardt, C., Reith, W., Renkawitz, R. and Forster, I., Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 1999. 8: 265277.
  • 33
    MacDonald, K. P., Rowe, V., Clouston, A. D., Welply, J. K., Kuns, R. D., Ferrara, J. L., Thomas, R. et al., Cytokine expanded myeloid precursors function as regulatory antigen-presenting cells and promote tolerance through IL-10-producing regulatory T cells. J. Immunol. 2005. 174: 18411850.
  • 34
    Huang, B., Pan, P. Y., Li, Q., Sato, A. I., Levy, D. E., Bromberg, J., Divino, C. M. et al., Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006. 66: 11231131.
  • 35
    Nagaraj, S., Youn, J. I., Weber, H., Iclozan, C., Lu, L., Cotter, M. J., Meyer, C. et al., Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin. Cancer Res. 2010. 16: 18121823.
  • 36
    Zaugg, K., Su, Y. W., Reilly, P. T., Moolani, Y., Cheung, C. C., Hakem, R., Hirao, A. et al., Cross-talk between Chk1 and Chk2 in double-mutant thymocytes. Proc. Natl. Acad. Sci. USA 2007. 104: 38053810.
  • 37
    Hinton, H. J., Alessi, D. R. and Cantrell, D. A., The serine kinase phosphoinositide-dependent kinase 1 (PDK1) regulates T-cell development. Nat. Immunol. 2004. 5: 539545.
  • 38
    McCormack, M. P., Forster, A., Drynan, L., Pannell, R. and Rabbitts, T. H., The LMO2 T-cell oncogene is activated via chromosomal translocations or retroviral insertion during gene therapy but has no mandatory role in normal T-cell development. Mol. Cell. Biol. 2003. 23: 90039013.
  • 39
    Takahama, Y., Ohishi, K., Tokoro, Y., Sugawara, T., Yoshimura, Y., Okabe, M., Kinoshita, T. et al., Functional competence of T cells in the absence of glycosylphosphatidylinositol-anchored proteins caused by T cell-specific disruption of the Pig-a gene. Eur. J. Immunol. 1998. 28: 21592166.
  • 40
    Semerad, C. L., Christopher, M. J., Liu, F., Short, B., Simmons, P. J., Winkler, I., Levesque, J. P. et al., G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 2005. 106: 30203027.
  • 41
    Christopher, M. J. and Link, D. C., Granulocyte colony-stimulating factor induces osteoblast apoptosis and inhibits osteoblast differentiation. J. Bone Miner. Res. 2008. 23: 17651774.
  • 42
    Christopher, M. J., Liu, F., Hilton, M. J., Long, F. and Link, D. C., Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood 2009. 114: 13311339.
  • 43
    Zou, L., Barnett, B., Safah, H., Larussa, V. F., Evdemon-Hogan, M., Mottram, P., Wei, S. et al., Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res. 2004. 64: 84518455.
  • 44
    Lin, Y., Xu, L., Jin, H., Zhong, Y., Di, J. and Lin, Q. D., CXCL12 enhances exogenous CD4+CD25+T-cell migration and prevents embryo loss in non-obese diabetic mice. Fertil. Steril. 2009. 91: 26872696.
  • 45
    Tarasenko, T., Kole, H. K., Chi, A. W., Mentink-Kane, M. M., Wynn, T. A. and Bolland, S., T cell-specific deletion of the inositol phosphatase SHIP reveals its role in regulating Th1/Th2 and cytotoxic responses. Proc. Natl. Acad. Sci. USA 2007. 104: 1138211387.
  • 46
    Locke, N. R., Patterson, S. J., Hamilton, M. J., Sly, L. M., Krystal, G. and Levings, M. K., SHIP regulates the reciprocal development of T regulatory and Th17 cells. J. Immunol. 2009. 183: 975983.
  • 47
    Ono, M., Okada, H., Bolland, S., Yanagi, S., Kurosaki, T. and Ravetch, J. V., Deletion of SHIP or SHP-1 reveals two distinct pathways for inhibitory signaling. Cell 1997. 90: 293301.
  • 48
    Ruan, Q., Kameswaran, V., Tone, Y., Li, L., Liou, H. C., Greene, M. I., Tone, M. et al., Development of Foxp3(+) regulatory t cells is driven by the c-Rel enhanceosome. Immunity 2009. 31: 932940.
  • 49
    Scotta, C., Soligo, M., Camperio, C. and Piccolella, E., FOXP3 induced by CD28/B7 interaction regulates CD25 and anergic phenotype in human CD4+CD25- T lymphocytes. J. Immunol. 2008. 181: 10251033.
  • 50
    Guo, F., Iclozan, C., Suh, W. K., Anasetti, C. and Yu, X. Z., CD28 controls differentiation of regulatory T cells from naive CD4 T cells. J. Immunol. 2008. 181: 22852291.
  • 51
    Pierau, M., Engelmann, S., Reinhold, D., Lapp, T., Schraven, B. and Bommhardt, U. H., Protein kinase B/Akt signals impair Th17 differentiation and support natural regulatory T-cell function and induced regulatory T-cell formation. J. Immunol. 2009. 183: 61246134.
  • 52
    Patton, D. T., Garden, O. A., Pearce, W. P., Clough, L. E., Monk, C. R., Leung, E., Rowan, W. C. et al., Cutting edge: the phosphoinositide 3-kinase p110 delta is critical for the function of CD4+CD25+Foxp3+ regulatory T cells. J. Immunol. 2006. 177: 65986602.
  • 53
    Sauer, S., Bruno, L., Hertweck, A., Finlay, D., Leleu, M., Spivakov, M., Knight, Z. A. et al., T-cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl. Acad. Sci. USA 2008. 105: 77977802.
  • 54
    Haxhinasto, S., Mathis, D. and Benoist, C., The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 2008. 205: 565574.
  • 55
    Harris, S. J., Parry, R. V., Westwick, J. and Ward, S. G., Phosphoinositide lipid phosphatases: natural regulators of phosphoinositide 3-kinase signaling in T lymphocytes. J. Biol. Chem. 2008. 283: 24652469.
  • 56
    Kerr, W. G., A role for SHIP in stem cell biology and transplantation. Curr. Stem Cell Res. Ther. 2008. 3: 99106.
  • 57
    O'Connell, R. M., Chaudhuri, A. A., Rao, D. S. and Baltimore, D., Inositol phosphatase SHIP1 is a primary target of miR-155. Proc. Natl. Acad. Sci. USA 2009. 106: 71137118.
  • 58
    Ruschmann, J., Ho, V., Antignano, F., Kuroda, E., Lam, V., Ibaraki, M., Snyder, K. et al., Tyrosine phosphorylation of SHIP promotes its proteasomal degradation. Exp. Hematol. 2010. 38: 392402.
  • 59
    Trotta, R., Parihar, R., Yu, J., Becknell, B., Allard, J., 2nd, Wen, J., Ding, W. et al., Differential expression of SHIP1 in CD56bright and CD56dim NK cells provides a molecular basis for distinct functional responses to monokine costimulation. Blood 2005. 105: 30113018.
  • 60
    Rohrschneider, L. R., Fuller, J. F., Wolf, I., Liu, Y. and Lucas, D. M., Structure, function, and biology of SHIP proteins. Genes Dev. 2000. 14: 505520.