• autoantibody;
  • glomerulonephritis;
  • IL-21;
  • IL-6;
  • Lyn

The autoimmune disease systemic lupus erythematosus is characterized by loss of tolerance to nuclear Ags and a heightened inflammatory environment, which together result in end organ damage. Lyn-deficient mice, a model of systemic lupus erythematosus, lack an inhibitor of B-cell and myeloid cell activation. This results in B-cell hyper-responsiveness, plasma cell accumulation, autoantibodies, and glomerulonephritis (GN). IL-21 is associated with autoimmunity in mice and humans and promotes B-cell differentiation and class switching. Here, we explore the role of IL-21 in the autoimmune phenotypes of lyn–/– mice. We find that IL-21 mRNA is reduced in the spleens of lyn–/–IL-6–/– and lyn–/–Btklo mice, neither of which produce pathogenic autoantibodies or develop significant GN. While IL-21 is dispensable for plasma cell accumulation and IgM autoantibodies in lyn–/– mice, it is required for anti-DNA IgG antibodies and some aspects of T-cell activation. Surprisingly, GN still develops in lyn–/–IL-21–/– mice. This likely results from the presence of IgG autoantibodies against a limited set of non-DNA Ags. These studies identify a specific role for IL-21 in the class switching of anti-DNA B cells and demonstrate that neither IL-21 nor anti-DNA IgG is required for kidney damage in lyn–/– mice.