SEARCH

SEARCH BY CITATION

References

  • 1
    Heath, W. R.andCarbone, F. R., Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat. Immunol. 2009. 10: 12371244.
  • 2
    MacDonald, K. P., Munster, D. J., Clark, G. J., Dzionek, A., Schmitz, J.andHart, D. N., Characterization of human blood dendritic cell subsets. Blood 2002. 100: 45124520.
  • 3
    Lindstedt, M., Lundberg, K.andBorrebaeck, C. A., Gene family clustering identifies functionally associated subsets of human in vivo blood and tonsillar dendritic cells. J. Immunol. 2005. 175: 48394846.
  • 4
    Piccioli, D., Tavarini, S., Borgogni, E., Steri, V., Nuti, S., Sammicheli, C., Bardelli, M.et al.,Functional specialization of human circulating CD16 and CD1c myeloid dendritic-cell subsets. Blood 2007. 109: 53715379.
  • 5
    Robbins, S. H., Walzer, T., Dembele, D., Thibault, C., Defays, A., Bessou, G., Xu, H. et al., Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol. 2008. 9: R17.
  • 6
    Bachem, A., Guttler, S., Hartung, E., Ebstein, F., Schaefer, M., Tannert, A., Salama, A. et al., Superior antigen cross-presentation and XCR1 expression define human CD11 c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J. Exp. Med. 2010. 207: 12731281.
  • 7
    Crozat, K., Guiton, R., Contreras, V., Feuillet, V., Dutertre, C. A., Ventre, E., Vu Manh, T. P.et al.,The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J. Exp. Med. 2010. 207: 12831292.
  • 8
    Jongbloed, S. L., Kassianos, A. J., McDonald, K. J., Clark, G. J., Ju, X., Angel, C. E., Chen, C. J.et al.,Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 2010. 207: 12471260.
  • 9
    Poulin, L. F., Salio, M., Griessinger, E., Anjos-Afonso, F., Craciun, L., Chen, J. L., Keller, A. M. et al., Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha +dendritic cells. J. Exp. Med. 2010. 207: 12611271.
  • 10
    Edwards, A. D., Diebold, S. S., Slack, E. M., Tomizawa, H., Hemmi, H., Kaisho, T., Akira, S.et al.,Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines. Eur. J. Immunol. 2003. 33: 827833.
  • 11
    Elson, G., Dunn-Siegrist, I., Daubeuf, B.andPugin, J., Contribution of Toll-like receptors to the innate immune response to Gram-negative and Gram-positive bacteria. Blood 2007. 109: 15741583.
  • 12
    Schulz, O. and Reis e Sousa, C., Cross-presentation of cell-associated antigens by CD8alpha+ dendritic cells is attributable to their ability to internalize dead cells. Immunology 2002. 107: 183189.
  • 13
    Pulendran, B., Kumar, P., Cutler, C. W., Mohamadzadeh, M., Van Dyke, T. and Banchereau, J., Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. J. Immunol. 2001. 167: 50675076.
  • 14
    Cheong, C., Matos, I., Choi, J. H., Dandamudi, D. B., Shrestha, E., Longhi, M. P., Jeffrey, K. L. et al., Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209(+) dendritic cells for immune T cell areas. Cell 2010. 143: 416429.
  • 15
    Jarrossay, D., Napolitani, G., Colonna, M., Sallusto, F. and Lanzavecchia, A., Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur. J. Immunol. 2001. 31: 33883393.
  • 16
    Kadowaki, N., Ho, S., Antonenko, S., Malefyt, R. W., Kastelein, R. A., Bazan, F.andLiu, Y. J., Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J. Exp. Med. 2001. 194: 863869.
  • 17
    Jefford, M., Schnurr, M., Toy, T., Masterman, K. A., Shin, A., Beecroft, T., Tai, T. Y. et al., Functional comparison of DCs generated in vivo with Flt3 ligand or in vitro from blood monocytes: differential regulation of function by specific classes of physiologic stimuli. Blood 2003. 102: 17531763.
  • 18
    Radford, K. J., Jackson, A. M., Wang, J. H., Vassaux, G.andLemoine, N. R., Recombinant E. coli efficiently delivers antigen and maturation signals to human dendritic cells: presentation of MART1 to CD8+ T cells. Int. J. Cancer. 2003. 105: 811819.
  • 19
    Kassianos, A. J., Jongbloed, S. L., Hart, D. N. and Radford, K. J., Isolation of human blood DC subtypes. Methods Mol. Biol. 2010. 595: 4554.
  • 20
    Jarrossay, D., Napolitani, G., Colonna, M., Sallusto, F. and Lanzavecchia, A., Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur. J. Immunol. 2001. 31: 33883393.
  • 21
    Radford, K. J., Higgins, D. E., Pasquini, S., Cheadle, E. J., Carta, L., Jackson, A. M., Lemoine, N. R.et al.,A recombinant E. coli vaccine to promote MHC class I-dependent antigen presentation: application to cancer immunotherapy. Gene Ther. 2002. 9: 14551463.
  • 22
    Saraiva, M. and O'Garra, A., The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 2010. 10: 170181.
  • 23
    von Bergwelt-Baildon, M. S., Popov, A., Saric, T., Chemnitz, J., Classen, S., Stoffel, M. S., Fiore, F.et al.,CD25 and indoleamine 2,3-dioxygenase are up-regulated by prostaglandin E2 and expressed by tumor-associated dendritic cells in vivo: additional mechanisms of T-cell inhibition. Blood 2006. 108: 228237.
  • 24
    Popov, A., Driesen, J., Abdullah, Z., Wickenhauser, C., Beyer, M., Debey-Pascher, S., Saric, T.et al.,Infection of myeloid dendritic cells with Listeria monocytogenes leads to the suppression of T cell function by multiple inhibitory mechanisms. J. Immunol. 2008. 181: 49764988.
  • 25
    Grohmann, U., Fallarino, F. and Puccetti, P., Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol. 2003. 24: 242248.
  • 26
    Osugi, Y., Vuckovic, S.andHart, D. N., Myeloid blood CD11 c(+) dendritic cells and monocyte-derived dendritic cells differ in their ability to stimulate T lymphocytes. Blood 2002. 100: 28582866.
  • 27
    Moreira, L. O., El Kasmi, K. C., Smith, A. M., Finkelstein, D., Fillon, S., Kim, Y. G., Nunez, G. et al., The TLR2-MyD88-NOD2-RIPK2 signalling axis regulates a balanced pro-inflammatory and IL-10-mediated anti-inflammatory cytokine response to Gram-positive cell walls. Cell Microbiol. 2008. 10: 20672077.
  • 28
    Said, E. A., Dupuy, F. P., Trautmann, L., Zhang, Y., Shi, Y., El-Far, M., Hill, B. J.et al.,Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat. Med. 2010. 16: 452459.
  • 29
    Chamorro, S., Garcia-Vallejo, J. J., Unger, W. W., Fernandes, R. J., Bruijns, S. C., Laban, S., Roep, B. O. et al., TLR triggering on tolerogenic dendritic cells results in TLR2 up-regulation and a reduced proinflammatory immune program. J. Immunol. 2009. 183: 29842994.
  • 30
    De Trez, C., Pajak, B., Brait, M., Glaichenhaus, N., Urbain, J., Moser, M., Lauvau, G.et al.,TLR4 and Toll-IL-1 receptor domain-containing adapter-inducing IFN-beta, but not MyD88, regulate Escherichia coli-induced dendritic cell maturation and apoptosis in vivo. J. Immunol. 2005. 175: 839846.
  • 31
    Krcmery, V., Spanik, S., Mrazova, M., Trupl, J., Grausova, S., Grey, E., Kukuckova, E. et al., Bacteremias caused by Escherichia coli in cancer patients—analysis of 65 episodes. Int. J. Infect. Dis. 2002. 6: 6973.
  • 32
    Annane, D., Bellissant, E.andCavaillon, J. M., Septic shock. Lancet 2005. 365: 6378.
  • 33
    Huang, X., Venet, F., Chung, C. S., Lomas-Neira, J. and Ayala, A., Changes in dendritic cell function in the immune response to sepsis. Cell- & tissue-based therapy. Expert Opin. Biol. Ther. 2007. 7: 929938.
  • 34
    Guisset, O., Dilhuydy, M. S., Thiebaut, R., Lefevre, J., Camou, F., Sarrat, A., Gabinski, C. et al., Decrease in circulating dendritic cells predicts fatal outcome in septic shock. Intensive Care Med. 2007. 33: 148152.
  • 35
    Takahashi, K., Satoi, S., Yanagimoto, H., Terakawa, N., Toyokawa, H., Yamamoto, T., Matsui, Y.et al.,Circulating dendritic cells and development of septic complications after pancreatectomy for pancreatic cancer. Arch. Surg. 2007. 142: 11511157; discussion 1157.
  • 36
    Hotchkiss, R. S., Tinsley, K. W., Swanson, P. E., Grayson, M. H., Osborne, D. F., Wagner, T. H., Cobb, J. P.et al.,Depletion of dendritic cells, but not macrophages, in patients with sepsis. J. Immunol. 2002. 168: 24932500.
  • 37
    de Baey, A., Mende, I., Baretton, G., Greiner, A., Hartl, W. H., Baeuerle, P. A.andDiepolder, H. M., A subset of human dendritic cells in the T cell area of mucosa-associated lymphoid tissue with a high potential to produce TNF-alpha. J. Immunol. 2003. 170: 50895094.
  • 38
    Bamboat, Z. M., Stableford, J. A., Plitas, G., Burt, B. M., Nguyen, H. M., Welles, A. P., Gonen, M.et al.,Human liver dendritic cells promote T cell hyporesponsiveness. J. Immunol. 2009. 182: 19011911.
  • 39
    Fujita, S., Seino, K., Sato, K., Sato, Y., Eizumi, K., Yamashita, N., Taniguchi, M. et al., Regulatory dendritic cells act as regulators of acute lethal systemic inflammatory response. Blood 2006. 107: 36563664.
  • 40
    Efron, P. A., Martins, A., Minnich, D., Tinsley, K., Ungaro, R., Bahjat, F. R., Hotchkiss, R.et al.,Characterization of the systemic loss of dendritic cells in murine lymph nodes during polymicrobial sepsis. J. Immunol. 2004. 173: 30353043.
  • 41
    Radford, K. J., Turtle, C. J., Kassianos, A. J. and Hart, D. N., CD11c+ blood dendritic cells induce antigen-specific cytotoxic T lymphocytes with similar efficiency compared to monocyte-derived dendritic cells despite higher levels of MHC class I expression. J. Immunother. 2006. 29: 596605.
  • 42
    Jones, B. J., Brooke, G., Atkinson, K.andMcTaggart, S. J., Immunosuppression by placental indoleamine 2,3-dioxygenase: a role for mesenchymal stem cells. Placenta 2007. 28: 11741181.
  • 43
    Bonanomi, A., Kojic, D., Giger, B., Rickenbach, Z., Jean-Richard-Dit-Bressel, L., Berger, C., Niggli, F. K.et al.,Quantitative cytokine gene expression in human tonsils at excision and during histoculture assessed by standardized and calibrated real-time PCR and novel data processing. J. Immunol. Methods 2003. 283: 2743.