• 1
    Bendelac, A., Savage, P. B. and Teyton, L., The biology of NKT cells. Annu. Rev. Immunol. 2007. 25: 297336.
  • 2
    Benlagha, K., Kyin, T., Beavis, A., Teyton, L. and Bendelac, A., A thymic precursor to the NKT cell lineage. Science 2002. 296: 553555.
  • 3
    Pellicci, D. G., Hammond, K. J. L., Uldrich, A. P., Baxter, A. G., Smyth, M. J. and Godfrey, D. I., A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1-CD4 +CD1d-dependent precursor stage. J. Exp. Med. 2002. 195: 835844.
  • 4
    Gadue, P. and Stein, P. L., NKT cell precursors exhibit differential cytokine regulation and require Itk for efficient maturation. J. Immunol. 2002. 169: 23972406.
  • 5
    Benlagha, K., Wei, D. G., Veiga, J., Teyton, L. and Bendelac, A., Characterization of the early stages of thymic NKT cell development. J. Exp. Med. 2005. 202: 485492.
  • 6
    Azuara, V., Grigoriadou, K., Lembezat, M. P., Nagler-Anderson, C. and Pereira, P., Strain-specific TCR repertoire selection of IL-4-producing Thy-1dull γδ thymocytes. Eur. J. Immunol. 2001. 31: 205214.
  • 7
    Azuara, V., Lembezat, M. P. and Pereira, P., The homogeneity of the TCRδ repertoire expressed by the Thy-1dull γδ T cell population is due to cellular selection. Eur. J. Immunol. 1998. 28: 34563467.
  • 8
    Azuara, V., Levraud, J. P., Lembezat, M. P. and Pereira, P., A novel subset of adult γδ thymocytes that secretes a distinct pattern of cytokines and expresses a very restricted T cell peceptor repertoire. Eur. J. Immunol. 1997. 27: 544553.
  • 9
    Gerber, D. J., Azuara, V., Levraud, J.-P., Huang, S. Y., Lembezat, M.-P. and Pereira, P., IL-4-producing γδ T cells that express a very restricted TCR repertoire are preferentially localized in liver and spleen. J. Immunol. 1999. 163: 30763082.
  • 10
    Grigoriadou, K., Boucontet, L. and Pereira, P., Most IL-4-producing γδ thymocytes of adult mice originate from fetal precursors. J. Immunol. 2003. 171: 24132420.
  • 11
    Arase, H., Ono, S., Arase, N., Park, S. Y., Wakizaka, K., Watanabe, H., Ohno, H. et al., Developmental arrest of NK1.1+ T cell antigen receptor (TCR)-α/β+ T cells and expansion of NK1.1+ TCR-γ/δ+ T cell development in CD3ζ-deficient mice. J. Exp. Med. 1995. 182: 891895.
  • 12
    Lees, R. K., Ferrero, I. and MacDonald, H. R., Tissue-specific segregation of TCR γδ + NKT cells according to phenotype TCR repertoire and activation status: parallels with TCRαβ+NKT cells. Eur. J. Immunol. 2001. 31: 29012909.
  • 13
    Vicari, A. P., Mocci, S., Openshaw, P., O'Garra, A. and Zlotnik, A., Mouse γδ TCR+NK1.1+ thymocytes specifically produce interleukin-4, are major histocompatibility complex classI independent, and are developmentally related to αβ TCR+NK1.1+ thymocytes. Eur. J. Immunol. 1996. 26: 14241429.
  • 14
    Alonzo, E. S., Gottschalk, R. A., Das, J., Egawa, T., Hobbs, R. M., Pandolfi, P. P., Pereira, P. et al., Development of promyelocytic zinc finger and ThPOK-expressing innate γδ T cells is controlled by strength of TCR signaling and Id3. J. Immunol. 2010. 184: 12681279.
  • 15
    Kovalovsky, D., Uche, O. U., Eladad, S., Hobbs, R. M., Yi, W., Alonzo, E., Chua, K. et al., The BTB–zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat. Immunol. 2008. 9: 10551064.
  • 16
    Kreslavsky, T., Savage, A., Hobbs, R., Gounari, F., Bronson, R., Pereira, P., Pandolfi, P. P. et al., TCR-inducible PLZF transcription factor required for innate phenotype of a subset of γδ T cells with restricted TCR diversity. Proc. Natl. Acad. Sci. USA 2009. 106: 1245312458.
  • 17
    Savage, A. K., Constantinides, M. G., Han, J., Picard, D., Martin, E., Li, B., Lantz, O. et al., The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 2008. 29: 391403.
  • 18
    Verykokakis, M., Boos, M. D., Bendelac, A., Adams, E. J., Pereira, P. and Kee, B. L., Inhibitor of DNA binding 3 limits development of slam-associated adaptor protein-dependent “innate” γδ T cells. PLos One 2010. 5: e9303.
  • 19
    Weinreich, M. A., Odumade, O. A., Jameson, S. C. and Hogquist, K. A., T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells. Nat. Immunol. 2010. 11: 709716.
  • 20
    Chen, Y.-H., Chiu, N. M., Mandal, M., Wang, N. and Wang, C.-R., Impaired NK1+ T cell development and early IL-4 production in CD1-deficient mice. Immunity 1997. 6: 459467.
  • 21
    Mendiratta, S. K., Martin, W. D., Hong, S., Boesteanu, A., Joyce, S. and van Kaer, L., CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 1997. 6: 469477.
  • 22
    Eberl, G., Lees, R., Smiley, S. T., Taniguchi, M., Grusby, M. J. and MacDonald, H. R., Tissue-specific segregation of CD1d-dependent and CD1d-independent NKT cells. J. Immunol. 1999. 162: 64106419.
  • 23
    Atherly, L. O., Lucas, J. A., Felices, M., Yin, C. C., Reiner, S. L. and Berg, L. J., The Tec family tyrosine kinases Itk and Rlk regulate the development of conventional CD8+ T cells. Immunity 2006. 25: 7991.
  • 24
    Broussard, C., Fleischacker, C., Horai, R., Chetana, M., Venegas, A. M., Sharp, L. L., Hedrick, S. M. et al., Altered development of CD8 +T cell lineages in mice deficient for the Tec kinases Itk and Rlk. Immunity 2006. 25: 93104.
  • 25
    Malissen, M., Pereira, P., Gerber, D. J., Malissen, B. and DiSanto, J. P., The common cytokine receptor γ chain controls survival of γ/δ T cells. J. Exp. Med. 1997. 186: 12771285.
  • 26
    Matsuda, J. L., Gapin, L., Sidobre, S., Kieper, W. C., Tan, J. T., Ceredig, R., Surh, C. D. et al., Homeostasis of Va14i NKT cells. Nat. Immunol. 2002. 3: 966974.
  • 27
    Griewank, K., Borowski, C., Rietdijk, S., Wang, N., Julien, A., Wei, D. G., Mamchak, A. A. et al., Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity 2007. 27: 751762.
  • 28
    Jordan, M. A., Fletcher, J. M., Pellicci, D. and Baxter, A. G., Slamf1, the NKT cell control gene Nkt1. J. Immunol. 2007. 178: 16181627.
  • 29
    Ishida, I., Verbeck, S., Bonneville, M., Itohara, S., Berns, A. and Tonegawa, S., T-cell receptor γδ and γ transgenic mice suggest a role of a γ gene silencer in the generation of αβ T-cells. Proc. Natl. Acad. Sci. USA 1990. 87: 30673071.
  • 30
    Chien, Y. H., Iwashima, M., Kaplan, K. B., Elliott, J. F. and Davis, M. M., A new T-cell receptor gene located within the alpha locus and expressed early in T-cell differentiation. Nature 1987. 327: 677682.
  • 31
    Shires, J., Theodoridis, E. and Hayday, A. C., Biological insights into TCRγδ+ and TCRαβ +intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 2001. 15: 419434.
  • 32
    Denning, T. L., Granger, S. W., Mucida, D., Graddy, R., Leclercq, G., Zhang, W., Honey, K. et al., Mouse TCRαβ+CD8αα intraepithelial lymphocytes express genes that down-regulate their antigen reactivity and suppress immune responses. J. Immunol. 2007. 178: 42304239.
  • 33
    Kisielow, J., Tortola, L., Weber, J., Karjalainen, K. and Kopf, M., Evidence for the divergence of innate and adaptive T-cell precursors before commitment to the αβ and γδ lineages. Blood 2011. 118: 65916600.
  • 34
    Felices, M., Yin, C. C., Kosaka, Y., Kang, J. and Berg, L. J., Tec kinase Itk in γδT cells is pivotal for controlling IgE production in vivo. Proc. Natl. Acad. Sci. USA 2009. 106: 83088313.
  • 35
    Lauritsen, J., Wong, G., Lee, S., Lefebvre, J., Ciofani, M., Rhodes, M., Kappes, D. et al., Marked induction of the helix-loop-helix protein Id3 promotes the γδ T cell fate and renders their functional maturation Notch independent. Immunity 2009. 31: 565575.
  • 36
    Qi, Q., Xia, M., Hu, J., Hicks, E., Iyer, A., Xiong, N. and August, A., Enhanced development of CD4+ γδ T cells in the absence of Itk results in elevated IgE production. Blood 2009. 114: 564571.
  • 37
    Ueda-Hayakawa, I., Mahlios, J. and Zhuang, Y., Id3 restricts the developmental potential of γδ lineage during thymopoiesis. J. Immunol. 2009. 182: 53065316.
  • 38
    Alonzo, E. S. and Sant'Angelo, D. B., Development of PLZF-expressing innate T cells. Curr. Opinion Immunol. 2011. 23: 18.
  • 39
    Gerber, D., Boucontet, L. and Pereira, P., Early expression of a functional TCRβ chain inhibits TCRγ gene rearrangement without altering the frequency of TCRγδ lineage cells. J. Immunol. 2004. 173: 25162523.