• Antigen-presenting cells · Antigen transport · CCR7 · Dendritic cells · Skin

Under homeostatic conditions, skin DCs migrate to regional LNs transporting self-antigens (self-Ags). The transport of self-Ags is considered to be critical for maintaining peripheral tolerance. Although the chemokine receptor CCR7 potently induces the migration of skin DCs to regional LNs, Ccr7−/− (Ccr7-KO) mice do not show skin auto-immune diseases. To resolve this inconsistency, we examined Ccr7-KO epidermis- or dermis-hyperpigmented transgenic (Tg) mice, in which the transport of skin self-Ags is traceable by melanin granules (MGs). Under CCR7-deficient conditions, the transport of epidermal MGs to regional LNs was impaired at 7 weeks of age. However, epidermal MGs could be transported when they had accumulated in the dermis. Ccr7-KO-dermis-pigmented Tg mice confirmed the presence of CCR7-independent transport from the dermis. Compared with WT-dermis-pigmented Tg mice, the amount of transported melanin and number of MG-laden CD11c+ cells were both approximately 40% of the WT levels, while the number of MG-laden CD205+ or CD207+ cells decreased to about 10% in skin regional LNs of Ccr7-KO-dermis-pigmented Tg mice. Cell sorting highlighted the involvement of CD11c+ cells in the CCR7-independent transport. Here, we show that CCR7-independent transport of skin self-Ags occurs in the dermis. This system might contribute to the continuous transport of self-Ags, and maintain peripheral tolerance.