SEARCH

SEARCH BY CITATION

References

  • 1
    Huang, F. P., Platt, N., Wykes, M., Major, J. R., Powell, T. J., Jenkins, C. D. and MacPherson, G. G., A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T-cell areas of mesenteric lymph nodes. J. Exp. Med. 2000. 191: 435444.
  • 2
    Hemmi, H., Yoshino, M., Yamazaki, H., Naito, M., Iyoda, T., Omatsu, Y., Shimoyama, S. et al., Skin antigens in the steady state are trafficked to regional lymph nodes by transforming growth factor-beta1-dependent cells. Int. Immunol. 2001. 13: 695704.
  • 3
    Scheinecker, C., McHugh, R., Shevach, E. M. and Germain, R. N., Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med. 2002. 196: 10791090.
  • 4
    Waithman, J., Allan, R. S., Kosaka, H., Azukizawa, H., Shortman, K., Lutz, M.B., Heath, W. R. et al., Skin-derived dendritic cells can mediate deletional tolerance of class I-restricted self-reactive T cells. J. Immunol. 2007. 179: 45354541.
  • 5
    Kurts, C., Heath, W. R., Carbone, F. R., Allison, J., Miller, J. F. and Kosaka, H., Constitutive class I-restricted exogenous presentation of self antigens in vivo. J. Exp. Med. 1996. 184: 923930.
  • 6
    Inaba, K., Pack, M., Inaba, M., Sakuta, H., Isdell, F. and Steinman, R. M., High levels of a major histocompatibility complex II-self peptide complex on dendritic cells from the T-cell areas of lymph nodes. J. Exp. Med. 1996. 186: 665672.
  • 7
    Mahnke, K., Schmitt, E., Bonifaz, L., Enk, A. H. and Jonuleit, H., Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunol. Cell. Biol. 2002. 80: 477483.
  • 8
    Steinman, R. M., Hawiger, D. and Nussenzweig, M. C., Tolerogenic dendritic cells. Annu. Rev. Immunol. 2003. 21: 685711.
  • 9
    Förster, R., Schubel, A., Breitfeld, D., Kremmer, E., Renner-Müller, I., Wolf, E. and Lipp, M., CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999. 99: 2333.
  • 10
    Gunn, M. D., Kyuwa, S., Tam, C., Kakiuchi, T., Matsuzawa, A., Williams, L. T. and Nakano, H., Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med. 1999. 189: 451460.
  • 11
    Saeki, H., Moore, A. M., Brown, M. J. and Hwang, S. T., Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J. Immunol. 1999. 162: 24722475.
  • 12
    Kurobe, H., Liu, C., Ueno, T., Saito, F., Ohigashi, I., Seach, N., Arakaki, R. et al., CCR7-dependent cortex-to-medulla migration of positively selected thymocytes is essential for establishing central tolerance. Immunity 2006. 24: 165177.
  • 13
    Davalos-Misslitz, A. C., Rieckenberg, J., Willenzon, S., Worbs, T., Kremmer, E., Bernhardt, G. and Förster, R., Generalized multi-organ autoimmunity in CCR7-deficient mice. Eur. J. Immunol. 2007. 37: 613622.
  • 14
    Ohl, L., Mohaupt, M., Czeloth, N., Hintzen, G., Kiafard, Z., Zwirner, J., Blankenstein, T. et al., CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 2004. 21: 279288.
  • 15
    Ginhoux, F., Collin, M. P., Bogunovic, M., Abe, M., Leboeuf, M., Helft, J., Ochando, J. et al., Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. J. Exp. Med. 2007. 204: 31333146.
  • 16
    Kunisada, T., Yoshida, H., Yamazaki, H., Miyamoto, A., Hemmi, H., Nishimura, E., Shultz, L. D. et al., Transgene expression of steel factor in the basal layer of epidermis promotes survival, proliferation, differentiation and migration of melanocyte precursors. Development 1998. 125: 29152923.
  • 17
    Kunisada, T., Yamazaki, H., Hirobe, T., Kamei, S., Omoteno, M., Tagaya, H., Hemmi, H. et al., Keratinocyte expression of transgenic hepatocyte growth factor affects melanocyte development, leading to dermal melanocytosis. Mech. Dev. 2000. 94: 6778.
  • 18
    Yoshino, M., Yamazaki, H., Nakano, H., Kakiuchi, T., Ryoke, K., Kunisada, T. and Hayashi, S.-I., Distinct antigen trafficking from skin in the steady and active states. Int. Immunol. 2003. 15: 773779.
  • 19
    Yoshino, M., Yamazaki, H., Shultz, L. D. and Hayashi, S.-I., Constant rate of steady-state self-antigen trafficking from skin to regional lymph nodes. Int. Immunol. 2006. 18: 15411548.
  • 20
    Yoshino, M., Yamazaki, H. and Hayashi, S.-I., Analysis of capturing skin antigens in the steady state using milk fat globule EGF factor 8-deficient skin-hyperpigmented mice. Immunol. Lett. 2008. 115: 131137.
  • 21
    Borkowski, T. A., Letterio, J. J., Farr, A. G. and Udey, M. C., A role for endogenous transforming growth factor beta 1 in Langerhans cell biology: the skin of transforming growth factor beta 1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med. 1996. 184: 24172422.
  • 22
    Nakano, H. and Gunn, M. D., Gene duplications at the chemokine locus on mouse chromosome 4: multiple strain-specific haplotypes and the deletion of secondary lymphoid-organ chemokine and EBI-1 ligand chemokine genes in the plt mutation. J. Immunol. 2001. 166: 361369.
  • 23
    Henri, S., Vremec, D., Kamath, A., Waithman, J., Williams, S., Benoist, C., Burnham, K.et al., The dendritic cell populations of mouse lymph nodes. J. Immunol. 2001. 167: 741748.
  • 24
    Valladeau, J., Ravel, O., Dezutter-Dambuyant, C., Moore, K., Kleijmeer, M., Liu, Y., Duvert-Frances, V. et al., Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 2000. 12: 7181.
  • 25
    Takahara, K., Omatsu, Y., Yashima, Y., Maeda, Y., Tanaka, S., Iyoda, T., Clausen, B. E. et al., Identification and expression of mouse langerin (CD207) in dendritic cells. Int. Immunol. 2002. 14: 433444.
  • 26
    Poulin, L. F., Henri, S., de Bovis, B., Devilard, E., Kissenpfennig, A. and Malissen, B., The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. J. Exp. Med. 2007. 204: 31193131.
  • 27
    Bursch, L. S., Wang, L., Igyarto, B., Kissenpfennig, A., Malissen, B., Kaplan, D. H. and Hogquist, K. A., Identification of a novel population of langerin+ dendritic cells. J. Exp. Med. 2007. 204: 31473156.
  • 28
    Rabinowitz, S. S. and Gordon, S., Macrosialin, a macrophage-restricted membrane sialoprotein differentially glycosylated in response to inflammatory stimuli. J. Exp. Med. 1991. 174: 827836.
  • 29
    Henri, S., Poulin, L. F., Tamoutounour, S., Ardouin, L., Guilliams, M., de Bovis, B., Devilard, E. et al., CD207+CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J. Exp. Med. 2010. 207: 189206.
  • 30
    Tamaki, K., Yasaka, N., Chang, C. H., Ohtake, N., Saitoh, A., Nakamura, K. and Furue, M., Identification and characterization of novel dermal Thy-1 antigen-bearing dendritic cells in murine skin. J. Invest. Dermatol. 1996. 106: 571575.
  • 31
    Sumaria, N., Roediger, B., Ng, L. G., Qin, J., Pinto, R., Cavanagh, L. L., Shklovskaya, E. et al., Cutaneous immunosurveillance by self-renewing dermal γδ T cells. J. Exp. Med. 2011. 208: 505518.
  • 32
    Vrieling, M., Santema, W., Van Rhijn, I., Rutten, V. and Koets, A., γδ T-cell homing to skin and migration to skin-draining lymph nodes is CCR7 independent. J. Immunol. 2012. 188: 578584.
  • 33
    Sixt, M., Kanazawa, N., Selg, M., Samson, T., Roos, G., Reinhardt, D. P., Pabst, R. et al., The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T-cell area of the lymph node. Immunity 2005. 22: 1929.
  • 34
    Nestle, F. O., Di Meglio, P., Qin, J. Z. and Nickoloff, B. J., Skin immune sentinels in health and disease. Nat. Rev. Immunol. 2009. 9: 679691.
  • 35
    Nagao, K., Ginhoux, F., Leitner, W., Motegi, S-I., Bennett, C., Clausen, B., Merad, M. et al., Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions. Proc. Natl. Acad. Sci. USA 2009. 106: 33123317.
  • 36
    Kel, J. M., Girard-Madoux, M. J., Reizis, B. and Clausen, B. E., TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis. J. Immunol. 2010. 185: 32483255.
  • 37
    Sharma, R., Sung, S. S., Abaya, C. E., Ju, A. C., Fu, S. M. and Ju, S. T., IL-2 regulates CD103 expression on CD4+T cells in Scurfy mice that display both CD103-dependent and independent inflammation. J. Immunol. 2009. 183: 10651073.
  • 38
    Kirby, A. C., Coles, M. C. and Kaye, P. M., Alveolar macrophages transport pathogens to lung draining lymph nodes. J. Immunol. 2009. 183: 19831989.
  • 39
    Christ, M., McCartney-Francis, N. L., Kulkarni, A. B., Ward, J. M., Mizel, D. E., Mackall, C. L., Gress, R. E. et al., Immune dysregulation in TGF-β1-deficient mice. J. Immunol. 1994. 153: 19361946.
  • 40
    Gordon, S., Macrophage-restricted molecules: role in differentiation and activation. Immunol. Lett. 1999. 65: 58.
  • 41
    Kurts, C., Sutherland, R. M., Davey, G., Li, M., Lew, A. M., Blanas, E., Carbone, F. R. et al., CD8 T-cell ignorance or tolerance to islet antigens depends on antigen dose. Proc. Natl. Acad. Sci. USA 1999. 96: 1270312707.
  • 42
    Morgan, D. J., Kreuwel, H. T. and Sherman, L. A., Antigen concentration and precursor frequency determine the rate of CD8+T-cell tolerance to peripherally expressed antigens. J. Immunol. 1999. 163: 723727.