SEARCH

SEARCH BY CITATION

References

  • 1
    Cooper, A. M., Cell mediated immune responses in tuberculosis. Annu. Rev. Immunol. 2009. 27: 393422.
  • 2
    Nathan, C., Inducible nitric oxide synthase: what difference does it make? J. Clin. Invest. 1997. 100: 24172423.
  • 3
    Bogdan, C., Nitric oxide and the immune response. Nat. Immunol. 2001. 2: 907916.
  • 4
    Cooper, A. M., Adams, L. B., Dalton, D. K., Appelberg, R.andEhlers, S., IFN-γ and NO in mycobacterial disease: new jobs for old hands. Trends Microbiol. 2002. 10: 221226.
  • 5
    Niedbala, W., Cai, B.andLiew, F. Y., Role of nitric oxide in the regulation of T-cell functions. Ann. Rheum. Dis. 2006. 65: iii37iii40.
  • 6
    Gomes, M. S., Florido, M., Pais, T. F. and Appelberg, R., Improved clearance of Mycobacterium avium upon disruption of the inducible nitric oxide synthase gene. J. Immunol. 1999. 162: 67346739.
  • 7
    Hirst, D. and Robson, T., Nitric oxide and physiology. In McCarthy, H. O. and Coulter, J. A. (Eds.), Methods in Molecular Biology Springer, London, 2011, pp. 113.
  • 8
    Xu, W., Charles, I. G. andMoncada, S., Nitric oxide: orchestrating hypoxia regulation through mitochondrial respiration and the endoplasmic reticulum stress response. Cell. Res. 2005. 15: 6365.
  • 9
    Hirst, D. and Robson, T., Nitrosative stress in cancer therapy. Front. Biosci. 2007. 12: 34063418.
  • 10
    Brown, G., Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biocim. Biophys. Acta – Bioenerg. 2001. 1504: 4657.
  • 11
    Gupta, M. P., Ober, M. D., Patterson, C., Al-Hassani, M., Natarajan, V. and Hart, C. M., Nitric oxide attenuates H2O2-induced endothelial barrier dysfunction: mechanisms of protection. Am. J. Physiol. – Lung Cell. Mol. Physiol. 2001. 280: L116L126.
  • 12
    Szabo, C., Ischiropoulos, H. and Radi, R., Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 2007. 6: 662680.
  • 13
    Bogdan, C., Regulation of lymphocytes by nitric oxide. Methods Mol. Biol. 2011. 677: 375393.
  • 14
    Fischer, T. A., Palmetshofer, A., Gambaryan, S., Butt, E., Jassoy, C., Walter, U., Sopper, S.et al.,Activation of cGMP-dependent protein kinase Iβ inhibits interleukin 2 release and proliferation of T-cell receptor-stimulated human peripheral T cells. J. Biol. Chem. 2001. 276: 59675974.
  • 15
    Millar, A. E., Sternberg, J., McSharry, C., Wei, X.-Q., Liew, F. Y. and Turner, C. M. R., T-cell responses during Trypanosoma brucei infections in mice deficient in inducible nitric oxide synthase. Infect. Immun. 1999. 67: 33343338.
  • 16
    Albina, J., Abate, J. and Henry, W., Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T-cell proliferation. Role of IFN-gamma in the induction of the nitric oxide-synthesizing pathway. J. Immunol. 1991. 147: 144148.
  • 17
    Gregory, S., Wing, E., Hoffman, R. and Simmons, R., Reactive nitrogen intermediates suppress the primary immunologic response to Listeria. J. Immunol. 1993. 150: 29012909.
  • 18
    Laroux, F., Lefer, D., Kawachi, S., Scalia, R., Cockrell, A., Gray, L., Van der Heyde, H. et al., Role of nitric oxide in the regulation of acute and chronic inflammation. Antioxid. Redox Signal. 2000. 2: 391396.
  • 19
    Niedbala, W., Cai, B., Liu, H., Pitman, N., Chang, L. and Liew, F. Y., Nitric oxide induces CD4+CD25 +Foxp3− regulatory T cells from CD4+CD25− T cells via p53, IL-2, and OX40. Proc. Natl. Acad. Sci. USA 2007. 104: 1547815483.
  • 20
    Niedbala, W., Alves-Filho, J. C., Fukada, S. Y., Vieira, S. M., Mitani, A., Sonego, F., Mirchandani, A.et al,Regulation of type 17 helper T-cell function by nitric oxide during inflammation. Proc. Natl. Acad. Sci. USA 2011. 108: 92209225.
  • 21
    Diefenbach, A., Schindler, H., Röllinghoff, M., Yokoyama, W. and Bogdan, C., Requirement for type 2 NO synthase for IL-12 signaling in innate immunity. Science 1999. 284: 951955.
  • 22
    Huang, F.-P., Niedbala, W., Wei, X.-Q., Xu, D., Feng, G.-j., Robinson, J. H., Lam, C. et al., Nitric oxide regulates Th1 cell development through the inhibition of IL-12 synthesis by macrophages. Eur. J. Immunol. 1998. 28: 40624070.
  • 23
    Niedbala, W., Wei, X.-Q., Campbell, C., Thomson, D., Komai-Koma, M. and Liew, F. Y., Nitric oxide preferentially induces type 1 T-cell differentiation by selectively up-regulating IL-12 receptor β2 expression via cGMP. Proc. Natl. Acad. Sci. USA 2002. 99: 1618616191.
  • 24
    Niedbala, W., Wei, X.-Q., Piedrafita, D., Xu, D. and Liew, F. Y., Effects of nitric oxide on the induction and differentiation of Th1 cells. Eur. J. Immunol. 1999. 29: 24982505.
  • 25
    Lee, S.-W., Choi, H., Eun, S.-Y., Fukuyama, S. and Croft, M., Nitric oxide modulates TGF-β–directive signals to suppress Foxp3+ regulatory T-cell differentiation and potentiate Th1 development. J. Immunol. 2011. 186: 69726980.
  • 26
    Dalton, D. K., Haynes, L., Chu, C. Q., Swain, S. L. and Wittmer, S., Interferon gamma eliminates responding CD4 T cells during mycobacterial infection by inducing apoptosis of activated CD4 T cells. J. Exp. Med. 2000. 192: 117122.
  • 27
    Nabeshima, S., Nomoto, M., Matsuzaki, G., Kishihara, K., Taniguchi, H., Yoshida, S. and Nomoto, K., T-cell hyporesponsiveness induced by activated macrophages through nitric oxide production in mice infected with Mycobacterium tuberculosis. Infect. Immun. 1999. 67: 32213226.
  • 28
    MacMicking, J. D., North, R. J., LaCourse, R., Mudgett, J., Shah, S. K. and Nathan, C. F., Identification of NOS2 as a protective locus against tuberculosis. Proc. Natl. Acad. Sci. USA 1997. 94: 52435248.
  • 29
    Lousada, S., Flórido, M. and Appelberg, R., Regulation of granuloma fibrosis by nitric oxide during Mycobacterium avium experimental infection. Int. J. Exp. Pathol. 2006. 87: 307315.
  • 30
    Ehlers, S., Kutsch, S., Benini, J., Cooper, A. M., Hahn, C., Gerdes, J., Orme, I. M. et al., NOS2-derived nitric oxide regulates the size, quantity and quality of granuloma formation in Mycobacterium avium infected mice without affecting bacterial loads. Immunology 1999. 98: 313323.
  • 31
    Reiley, W. W., Shafiani, S., Wittmer, S. T., Tucker-Heard, G., Moon, J. J., Jenkins, M. K., Urdahl, K. B. et al., Distinct functions of antigen-specific CD4 T cells during murine Mycobacterium tuberculosis infection. Proc. Natl. Acad. Sci. USA 2010. 107: 1940819413.
  • 32
    Florido, M., Cooper, A. M. and Appelberg, R., Immunological basis of the development of necrotic lesions following Mycobacterium avium infection. Immunology 2002. 106: 590601.
  • 33
    Bedard, K. and Krause, K.-H., The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 2007. 87: 245313.
  • 34
    Florido, M., Pearl, J., Solache, A., Borges, M., Haynes, L., Cooper, A. and Appelberg, R., Gamma interferon-induced T-cell loss in virulent Mycobacterium avium infection. Infect. Immun. 2005. 73: 35773586.
  • 35
    Testi, R., Phillips, J. H. and Lanier, L. L., Leu 23 induction as an early marker of functional CD3/T cell antigen receptor triggering. J. Immunol. 1989. 142: 18541860.
  • 36
    Corbett, J., Tilton, R., Chang, K., Hasan, K., Ido, Y., Wang, J., Sweetland, M. et al., Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes 1992. 41: 552556.
  • 37
    Ehlers, S., Benini, J., Held, H.-D., Roeck, C., Alber, G. and Uhlig, S., αβ T-cell receptor-positive cells and interferon-γ, but not inducible nitric oxide synthase, are critical for granuloma necrosis in a mouse model of mycobacteria-induced pulmonary immunopathology. J. Exp. Med. 2001. 194: 18471859.
  • 38
    Florido, M., Goncalves, A.-S., Silva, R. A., Ehlers, S., Cooper, A. M. and Appelberg, R., Resistance of virulent Mycobacterium avium to gamma interferon-mediated antimicrobial activity suggests additional signals for induction of mycobacteriostasis. Infect. Immun. 1999. 67: 36103618.
  • 39
    Mayer, K., Mohrs, K., Crowe, S., Johnson, L., Rhyne, P., Woodland, D. and Mohrs, M., The functional heterogeneity of type I effector T cells in response to infection is related to the potential for IFN-γ production. J. Immunol. 2005. 180: 77327739.
  • 40
    Li, X., McKinstry, K., Swain, S. and Dalton, D., IFN-gamma acts directly on activated CD4+ T cells during mycobacterial infection to promote apoptosis by inducing components of the intracellular apoptosis machinery and by inducing extracellular proapoptotic signals. J. Immunol. 2007. 179: 939949.
  • 41
    Feng, C., Zheng, L., Jankovic, D., Báfica, A., Cannons, J., Watford, W., Chaussabel, D. et al., The immunity-related GTPase Irgm1 promotes the expansion of activated CD4+ T-cell populations by preventing interferon-gamma-induced cell death. Nat. Immunol. 2008. 9: 12791287.
  • 42
    Paoluzzi, L. and O'Connor, O., Targeting survival pathways in lymphoma. Adv. Exp. Med. Biol. 2010. 687: 7996.
  • 43
    Sasaki, K., Pardee, A. D., Okada, H. and Storkus, W. J., IL-4 inhibits VLA-4 expression on Tc1 cells resulting in poor tumor infiltration and reduced therapy benefit. Eur. J. Immunol. 2008. 38: 28652873.
  • 44
    Sasaki, K., Pardee, A., Qu, Y., Zhao, X., Ueda, R., Kohanbash, G., Bailey, L. et al., IL-4 suppresses very late antigen-4 expression which is required for therapeutic Th1 T-cell trafficking into tumors. J. Immunother. 2009. 32: 793802.
  • 45
    Calderon, B., Carrero, J. A., Miller, M. J. and Unanue, E. R., Entry of diabetogenic T cells into islets induces changes that lead to amplification of the cellular response. Proc. Natl. Acad. Sci. USA 2011. 108: 15671572.
  • 46
    Suvas, S., Kim, B. and Rouse, B. T., Homeostatic expansion of CD4+ T cells upregulates VLA-4 and exacerbates HSV-induced corneal immunopathology. Microbes Infect. 2008. 10: 11921200.
  • 47
    Nguyen, K., Sylvain, N. R. and Bunnell, S. C., T-cell costimulation via the integrin VLA-4 inhibits the actin-dependent centralization of signaling microclusters containing the adaptor SLP-76. Immunity 2008. 28: 810821.
  • 48
    Orme, I. and Roberts, A., Animal models of mycobacteria infection (section 19.5.1). Curr. Protoc. Immunol. 2001. 30:19.5.119.5.22.
  • 49
    Roberts, A., Cooper, A., Belisle, J., Turner, J., Gonzalez-Juarerro, M. and Orme, I., Murine models of tuberculosis. In Kaufmann, S. and Kabelitz, D. (Eds.), Methods in Microbiology, Second Edn. Academic Press, London, 2002, pp. 433462.
  • 50
    Khader, S., Pearl, J., Sakamoto, K., Gilmartin, L., Bell, G., Jelley-Gibbs, D., Ghilardi, N. et al., IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-γ responses if IL-12p70 is available. J. Immunol. 2005. 175: 788795.
  • 51
    Simon, R., Lam, A., Li, M., Ngan, M., Menenzes, S. and Zhao, Y., Analysis of gene expression data using BRB-ArrayTools. Cancer Inform. 2007. 3: 1117.
  • 52
    Simon, R., Korn, E., McShane, L., Radmacher, M., Wright, G. and Zhao, Y., Design and analysis of DNA microarray investigations. Springer Verlag, New York, 2003.
  • 53
    Simon, R. and Lam, A., BRB array tools users technical reports. Biometric Research Branch, National Cancer Institute, Bethesda, MD, 2006.
  • 54
    Wu, Z., Itrizarry, R., Gentleman, R., Murillo, F. and Spencer, F., A model based background adjustment for oligonucleotide expression arrays. J. Am. Stat. Assoc. 2004. 99: 909917.
  • 55
    Seo, J.and Hoffman, E., Probe set algorithms: is there a rational best bet? BMC Bioinform. 2006. 7: 395.