SEARCH

SEARCH BY CITATION

References

  • 1
    Michalany, J.andMichalany, N. S., A new morphological concept and classification of granulomatous inflammation: the polar granulomas. Ann. Pathol. 1994. 4: 8595.
  • 2
    Kaplan, G., Nusrat, A., Sarno, E. N., Job, C. K., McElrath, J., Porto, J. A., Nathan, C. F.et al.,Cellular responses to the intradermal injection of recombinant human gamma-interferon in lepromatous leprosy patients. Am. J. Pathol. 1987. 128: 345353.
  • 3
    Bloom, B. R., Mehra, V., Melancon-Kaplan, J., Castes, M., Convit, J., Brennan, P. J., Rea, T. H. et al., Mechanisms of immunological unresponsiveness in the spectra of leprosy and leishmaniasis. Adv. Exp. Med. Biol. 1988. 239: 263278.
  • 4
    Salgame, P., Modlin, R. L. and Bloom, B. R., On the mechanism of human T cell suppression. Int. Immunol. 1989. 1: 121129.
  • 5
    Bloom, B. R., Modlin, R. L. and Salgame, P., Stigma variations: observations on suppressor T cells and leprosy. Annu. Rev. Immunol. 1992. 10: 453488.
  • 6
    De Souza Sales, J., Lara, F. A., Amadeu, T. P., de Oliveira Fulco, T., da Costa Nery, J. A., Sampaio, E. P., Pinheiro, R. O. et al., The role of indoleamine 2, 3-dioxygenase in lepromatous leprosy immunosuppression. Clin. Exp. Immunol. 2011. 165: 251263.
  • 7
    Kumar, S., Naqvi, R. A., Khanna, N. and Rao, D. N., Disruption of HLA-DR raft, deregulations of Lck-ZAP-70-Cbl-b cross-talk and miR181a towards T cell hyporesponsiveness in leprosy. Mol. Immunol. 2011. 48: 11781190.
  • 8
    Cruz, D., Watson, A. D., Miller, C. S., Montoya, D., Ochoa, M. T., Sieling, P. A., Gutierrez, M. A. et al., Host-derived oxidized phospholipids and HDL regulate innate immunity in human leprosy. J. Clin. Invest. 2008. 118: 29172928.
  • 9
    de Chastellier, C., Forquet, F., Gordon, A. and Thilo, L., Mycobacterium requires an all-around closely apposing phagosome membrane to maintain the maturation block and this apposition is re-established when it rescues itself from phagolysosomes. Cell Microbiol 2009. 11: 11901207.
  • 10
    Montoya, D., Cruz, D., Teles, R. M., Lee, D. J., Ochoa, M. T., Krutzik, S. R., Chun, R. et al., Divergence of macrophage phagocytic and antimicrobial programs in leprosy. Cell Host Microbe 2009. 6: 343353.
  • 11
    Philippidis, P., Mason, J. C., Evans, B. J., Nadra, I., Taylor, K. M., Haskard, D. O., Landis, R. C. et al., Hemoglobin scavenger receptor CD163 mediates interleukin 10 release and heme oxygenase-1 synthesis: anti-inflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circ. Res. 2004. 94: 119126.
  • 12
    Sulahian, T. H., Högger, P., Wahner, A. E., Wardwell, K., Goulding, N. J., Sorg, C., Droste, A. et al., Human monocytes express CD163, which is upregulated by IL-10 and identical to p155. Cytokine 2000. 12: 13121321.
  • 13
    Fabriek, B. O., Dijkstra, C. D. and van den Berg, T. K., The macrophage scavenger receptor CD163. Immunobiology 2005. 210: 153160.
  • 14
    Davis, B. H. and Zarev, P. V., Human monocyte CD163 expression inversely correlates with soluble CD163 plasma levels. Cytometry B Clin. Cytom. 2005. 63: 1622.
  • 15
    Moestrup, S. K. and Møller, H. J., CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Ann. Med. 2004. 36: 347354.
  • 16
    Fabriek, B. O., van Bruggen, R., Deng, D. M., Ligtenberg, A. J., Nazmi, K., Schornagel, K., Vloet, R. P. et al., The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood 2009. 113: 887892.
  • 17
    Ogasawara, N., Oguro, T., Sakabe, T. J., Matsushima, M., Takikawa, O., Isobe, K. and Nagase, F., Hemoglobin induces the expression of indoleamine 2,3-dioxygenase in dendritic cells through the activation of PI3K, PKC, and NF-kappaB and the generation of reactive oxygen species. Cell Biochem. 2009. 108: 716725.
  • 18
    Schaer, C. A., Schoedon, G., Imhof, A., Kurrer, M. O. and Schaer, D. J., Constitutive endocytosis of CD163 mediates hemoglobin-heme uptake and determines the noninflammatory and protective transcriptional response of macrophages to hemoglobin. Circ. Res. 2006. 99: 943950.
  • 19
    Martinez, F. O., Sica, A., Mantovani, A. and Locati, M., Macrophage activation and polarization. Front Biosci. 2008. 13: 453461.
  • 20
    Gaetano, C., Massimo, L. and Alberto, M., Control of iron homeostasis as a key component of macrophage polarization. Haematologica 2010. 95: 18011803.
  • 21
    Boyle, J. J., Harrington, H. A., Piper, E., Elderfield, K., Stark, J., Landis, R. C. and Haskard, D. O., Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype. Am. J. Pathol. 2009. 174: 10971108.
  • 22
    Sinsimer, D., Fallows, D., Peixoto, B., Krahenbuhl, J., Kaplan, G. and Manca, C., Mycobacterium leprae actively modulates the cytokine response in naive human monocytes. Infect Immun. 2010. 78: 293300.
  • 23
    Makino, M., Maeda, Y., Fukutomi, Y. and Mukai, T., Contribution of GM-CSF on the enhancement of the T cell-stimulating activity of macrophages. Microbes Infect. 2007. 9: 7077.
  • 24
    Weaver, L. K., Pioli, P. A. and Wardwell, K., Up-regulation of human monocyte CD163 upon activation of cell-surface Toll-like receptors. J. Leukoc. Biol. 2007. 81: 663671.
  • 25
    Moller, H. J., Peterslund, N. A., Graversen, J. H. and Moestrup, S. K., Identification of the hemoglobin scavenger receptor/CD163 as a natural soluble protein in plasma. Blood 2002. 99: 378380.
  • 26
    Weaver, L. K., Hintz-Goldstein, K. A., Pioli, P. A., Wardwell, K., Qureshi, N., Vogel, S. N. and Guyre, P. M., Pivotal advance: activation of cell surface Toll-like receptors causes shedding of the hemoglobin scavenger receptor CD163. J. Leukoc. Biol. 2006. 80: 2635.
  • 27
    Sulahian, T. H., Pioli, P. A., Wardwell, K.and Guyre, P. M., Cross-linking of FcgammaR triggers shedding of the hemoglobin-haptoglobin scavenger receptor CD163. J. Leukoc. Biol. 2004. 76: 271277.
  • 28
    Mocellin, S., Panelli, M. C., Wang, E., Nagorsen, D. and Marincola, F. M., The dual role of IL-10. Trends Immunol. 2003. 24: 3643.
  • 29
    Hu, X., Paik, P. K., Chen, J., Yarilina, A., Kockeritz, L., Lu, T. T., Woodgett, J. R. et al., IFN-gamma suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity 2006. 24: 563574.
  • 30
    Buechler, C., Ritter, M., Orsó, E., Langmann, T., Klucken, J. and Schmitz, G., Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and anti-inflammatory stimuli. J. Leukoc. Biol. 2000. 67: 97103.
  • 31
    Pallotta, M. T., Orabona, C., Volpi, C., Vacca, C., Belladonna, M. L., Bianchi, R., Servillo, G. et al., Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat. Immunol. 2011. 12: 870878.
  • 32
    Barry, C. E. 3rd and Boshoff, H., Getting the iron out. Nat. Chem. Biol. 2005. 1: 127128.
  • 33
    Pessolani, M. C., Smith, D. R., Rivoire, B., McCormick, J., Hefta, S. A., Cole, S. T. and Brennan, P. J., Purification, characterization, gene sequence, and significance of a bacterioferritin from Mycobacterium leprae. J. Exp. Med. 1994. 180: 319327.
  • 34
    Gupta, V., Gupta, R. K., Khare, G., Salunke, D. M. and Tyagi, A. K., Crystal structure of Bfr A from Mycobacterium tuberculosis: incorporation of selenomethionine results in cleavage and demetallation of haem. PLoS ONE 2009. 4: e8028.
  • 35
    Quadri, L. E. N. and Ratledge, C., Iron Metabolism in the Tubercle Bacillus and other Mycobacteria. In Cole, S. T., Eisenach, K. D. , McMurray, D. N. and Jacobs, W. R. J. (Eds), In Tuberculosis and the Tubercle Bacillus, ASM Press, Washington, District of Columbia 2005, pp. 341357.
  • 36
    Mattos, K. A., Lara, F. A., Oliveira, V. G., Rodrigues, L. S., D'Avila, H., Melo, R. C., Manso, P. P. et al., Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes. Cell Microbiol. 2011. 13: 259273.
  • 37
    Ridley, D. S.and Jopling, W. H., Classification of leprosy according to immunity. A five-group system. Int. J. Lepr. Other Mycobact. Dis. 1966. 34: 255273.
  • 38
    Moura, D. F., Teles, R. M., Ribeiro-Carvalho, M. M., Teles, R. B., Santos, I. M., Ferreira, H., Fulco, T. O. et al., Long-term culture of multibacillary leprosy macrophages isolated from skin lesions: a new model to study Mycobacterium leprae-human cell interaction. Br. J. Dermatol. 2007. 157: 273283.
  • 39
    Wan, C. P., Park, C.S., Lau, B.H., A rapid and simple microfluorometric phagocytosis assay. J. Immunol. Methods 1993. 162: 17.
  • 40
    Etzerodt, A., Maniecki, M. B., Møller, K., Møller, H. J. and Moestrup, S. K., Tumor necrosis factor α-converting enzyme (TACE/ADAM17) mediates ectodomain shedding of the scavenger receptor CD163. J. Leukoc. Biol. 2010. 88: 12011205.