• 1
    Sakaguchi, S., Ono, M., Setoguchi, R., Yagi, H., Hori, S., Fehervari, Z., Shimizu, J. et al., Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol. Rev. 2006. 212: 827.
  • 2
    Xu, L., Kitani, A., Fuss, I. and Strober, W., Cutting edge: regulatory T cells induce CD4+CD25-Foxp3-T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J. Immunol. 2007. 178: 67256729.
  • 3
    Yang, X. O., Nurieva, R., Martinez, G. J., Kang, H. S., Chung, Y., Pappu, B. P., Shah, B. et al., Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 2008. 29: 4456.
  • 4
    Floess, S., Freyer, J., Siewert, C., Baron, U., Olek, S., Polansky, J., Schlawe, K. et al., Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 2007. 5: e38.
  • 5
    Korn, T., Reddy, J., Gao, W., Bettelli, E., Awasthi, A., Petersen, T. R., Backstrom, B. T. et al., Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat. Med. 2007. 13: 423431.
  • 6
    Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T. B., Oukka, M., Weiner, H. L. et al., Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006. 441: 235238.
  • 7
    Silver, J. S. and Hunter, C. A., gp130 at the nexus of inflammation, autoimmunity, and cancer. J. Leukoc. Biol. 2010. 88: 11451156.
  • 8
    Rose-John, S., Scheller, J., Elson, G. and Jones, S. A., Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J. Leukoc. Biol. 2006. 80: 227236.
  • 9
    Jones, S. A. and Rose-John, S., The role of soluble receptors in cytokine biology: the agonistic properties of the sIL-6R/IL-6 complex. Biochim. Biophys. Acta 2002. 1592: 251263.
  • 10
    Zheng, S. G., Wang, J. and Horwitz, D. A., Cutting edge: Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J. Immunol. 2008. 180: 71127116.
  • 11
    O'Connor, R. A., Leech, M. D., Suffner, J., Hammerling, G. J. and Anderton, S. M., Myelin-reactive, TGF-beta-induced regulatory T cells can be programmed to develop Th1-like effector function but remain less proinflammatory than myelin-reactive Th1 effectors and can suppress pathogenic T cell clonal expansion in vivo. J. Immunol. 2010. 185: 72357243.
  • 12
    Koch, M. A., Tucker-Heard, G., Perdue, N. R., Killebrew, J. R., Urdahl, K. B. and Campbell, D. J., The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 2009. 10: 595602.
  • 13
    Glabinski, A. R., Tani, M., Tuohy, V. K., Tuthill, R. J. and Ransohoff, R. M., Central nervous system chemokine mRNA accumulation follows initial leukocyte entry at the onset of acute murine experimental autoimmune encephalomyelitis. Brain Behav. Immun. 1995. 9: 315330.
  • 14
    Yang, X. O., Panopoulos, A. D., Nurieva, R., Chang, S. H., Wang, D., Watowich, S. S. and Dong, C., STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem. 2007. 282: 93589363.
  • 15
    Becher, B., Durell, B. G. and Noelle, R. J., IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J. Clin. Invest. 2003. 112: 11861191.
  • 16
    Petermann, F., Rothhammer, V., Claussen, M. C., Haas, J. D., Blanco, L. R., Heink, S., Prinz, I. et al., Gammadelta T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity 2010. 33: 351363.
  • 17
    Zhou, X., Kong, N., Wang, J., Fan, H., Zou, H., Horwitz, D., Brand, D. et al., Cutting edge: all-trans retinoic acid sustains the stability and function of natural regulatory T cells in an inflammatory milieu. J. Immunol. 2010. 185: 26752679.
  • 18
    Pino-Lagos, K., Guo, Y., Brown, C., Alexander, M. P., Elgueta, R., Bennett, K. A., De Vries, V. et al., A retinoic acid-dependent checkpoint in the development of CD4+ T cell-mediated immunity. J. Exp. Med. 2011. 208: 17671775.
  • 19
    Kurschus, F. C., Croxford, A. L., Heinen, A. P., Wortge, S., Ielo, D. and Waisman, A., Genetic proof for the transient nature of the Th17 phenotype. Eur. J. Immunol. 2010. 40: 33363346.
  • 20
    Hirota, K., Duarte, J. H., Veldhoen, M., Hornsby, E., Li, Y., Cua, D. J., Ahlfors, H. et al., Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 2010. 12: 255263.
  • 21
    Pasare, C. and Medzhitov, R., Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 2003. 299: 10331036.
  • 22
    Dominguez-Villar, M., Baecher-Allan, C. M. and Hafler, D. A., Identification of T helper type 1-like, Foxp3(+) regulatory T cells in human autoimmune disease. Nat. Med. 2011. 17: 673675.
  • 23
    Fontenot, J. D., Rasmussen, J. P., Williams, L. M., Dooley, J. L., Farr, A. G. and Rudensky, A. Y., Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005. 22: 329341.
  • 24
    Suffner, J., Hochweller, K., Kuhnle, M. C., Li, X., Kroczek, R. A., Garbi, N. and Hammerling, G. J., Dendritic cells support homeostatic expansion of Foxp3+ regulatory T cells in Foxp3.LuciDTR mice. J. Immunol. 2010. 184: 18101820.
  • 25
    McGeachy, M. J., Stephens, L. A. and Anderton, S. M., Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J. Immunol. 2005. 175: 30253032.
  • 26
    Fischer, M., Goldschmitt, J., Peschel, C., Brakenhoff, J. P., Kallen, K. J., Wollmer, A., Grotzinger, J. et al., I. A bioactive designer cytokine for human hematopoietic progenitor cell expansion. Nat. Biotechnol. 1997. 15: 142145.