• 1
    WHO, World Malaria Report 2010, WHO Press, Geneva, Switzerland, 2010.
  • 2
    Doolan, D. L., Dobano, C. and Baird, J. K., Acquired immunity to malaria. Clin. Microbiol. Rev. 2009. 22: 1336.
  • 3
    Gupta, S., Snow, R. W., Donnelly, C. A., Marsh, K. and Newbold, C., Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat. Med. 1999. 5: 340343.
  • 4
    Hudson Keenihan, S. N., Ratiwayanto, S., Soebianto, S., Krisin, Marwoto, H., Krishnegowda, G., Gowda, D. C. et al., Age-dependent impairment of IgG responses to glycosylphosphatidylinositol with equal exposure to Plasmodium falciparum among Javanese migrants to Papua, Indonesia. Am. J. Trop. Med. Hyg. 2003. 69: 3641.
  • 5
    Ofori, M. F., Dodoo, D., Staalsoe, T., Kurtzhals, J. A., Koram, K., Theander, T. G., Akanmori, B. D. and Hviid, L., Malaria-induced acquisition of antibodies to Plasmodium falciparum variant surface antigens. Infect Immun. 2002. 70: 29822988.
  • 6
    Nielsen, M. A., Staalsoe, T., Kurtzhals, J. A., Goka, B. Q., Dodoo, D., Alifrangis, M., Theander, T. G. et al., Plasmodium falciparum variant surface antigen expression varies between isolates causing severe and nonsevere malaria and is modified by acquired immunity. J. Immunol. 2002. 168: 34443450.
  • 7
    Struik, S. S. and Riley, E. M., Does malaria suffer from lack of memory? Immunol. Rev. 2004. 201: 268290.
  • 8
    Jennings, R. M., JB, D. E. S., Todd, J. E., Armstrong, M., Flanagan, K. L., Riley, E. M. and Doherty, J. F., Imported Plasmodium falciparum malaria: are patients originating from disease-endemic areas less likely to develop severe disease? A prospective, observational study. Am. J. Trop. Med. Hyg. 2006. 75: 11951199.
  • 9
    Jelinek, T., Schulte, C., Behrens, R., Grobusch, M. P., Coulaud, J. P., Bisoffi, Z., Matteelli, A. et al., Imported Falciparum malaria in Europe: sentinel surveillance data from the European network on surveillance of imported infectious diseases. Clin. Infect. Dis. 2002. 34: 572576.
  • 10
    Nussenzweig, R. S., Vanderberg, J., Most, H. and Orton, C., Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. Nature 1967. 216: 160162.
  • 11
    Weiss, W. R., Sedegah, M., Beaudoin, R. L., Miller, L. H. and Good, M. F., CD8+ T cells (cytotoxic/suppressors) are required for protection in mice immunized with malaria sporozoites. Proc. Natl. Acad. Sci. USA 1988. 85: 573576.
  • 12
    Clyde, D. F., Immunization of man against falciparum and vivax malaria by use of attenuated sporozoites. Am. J. Trop. Med. Hyg. 1975. 24: 397401.
  • 13
    Mueller, A. K., Labaied, M., Kappe, S. H. and Matuschewski, K., Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature 2005. 433: 164167.
  • 14
    Zavala, F., Cochrane, A. H., Nardin, E. H., Nussenzweig, R. S. and Nussenzweig, V., Circumsporozoite proteins of malaria parasites contain a single immunodominant region with two or more identical epitopes. J. Exp. Med. 1983. 157: 19471957.
  • 15
    Kumar, S., Miller, L. H., Quakyi, I. A., Keister, D. B., Houghten, R. A., Maloy, W. L., Moss, B. et al., Cytotoxic T cells specific for the circumsporozoite protein of Plasmodium falciparum. Nature 1988. 334: 258260.
  • 16
    Hoffman, S. L., Isenbarger, D., Long, G. W., Sedegah, M., Szarfman, A., Mellouk, S. and Ballou, W. R., T lymphocytes from mice immunized with irradiated sporozoites eliminate malaria from hepatocytes. Bull. World Health Organ. 1990. 68 Suppl: 132137.
  • 17
    Weiss, W. R., Mellouk, S., Houghten, R. A., Sedegah, M., Kumar, S., Good, M. F., Berzofsky, J. A. et al., Cytotoxic T cells recognize a peptide from the circumsporozoite protein on malaria-infected hepatocytes. J. Exp. Med. 1990. 171: 763773.
  • 18
    Schofield, L., Villaquiran, J., Ferreira, A., Schellekens, H., Nussenzweig, R. and Nussenzweig, V., Gamma interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature 1987. 330: 664666.
  • 19
    Allsopp, C. E., Plebanski, M., Gilbert, S., Sinden, R. E., Harris, S., Frankel, G., Dougan, G. et al., Comparison of numerous delivery systems for the induction of cytotoxic T lymphocytes by immunization. Eur. J. Immunol. 1996. 26: 19511959.
  • 20
    Schneider, J., Gilbert, S. C., Blanchard, T. J., Hanke, T., Robson, K. J., Hannan, C. M., Becker, M. et al., Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat. Med. 1998. 4: 397402.
  • 21
    Gilbert, S. C., Schneider, J., Hannan, C. M., Hu, J. T., Plebanski, M., Sinden, R. and Hill, A. V., Enhanced CD8 T cell immunogenicity and protective efficacy in a mouse malaria model using a recombinant adenoviral vaccine in heterologous prime-boost immunisation regimes. Vaccine 2002. 20: 10391045.
  • 22
    Anderson, R. J., Hannan, C. M., Gilbert, S. C., Laidlaw, S. M., Sheu, E. G., Korten, S., Sinden, R. et al., Enhanced CD8+ T cell immune responses and protection elicited against Plasmodium berghei malaria by prime boost immunization regimens using a novel attenuated fowlpox virus. J. Immunol. 2004. 172: 30943100.
  • 23
    Tartz, S., Russmann, H., Kamanova, J., Sebo, P., Sturm, A., Heussler, V., Fleischer, B. and Jacobs, T., Complete protection against P. berghei malaria upon heterologous prime/boost immunization against circumsporozoite protein employing Salmonella type III secretion system and Bordetella adenylate cyclase toxoid. Vaccine 2008. 26: 59355943.
  • 24
    Schlecht, G., Loucka, J., Najar, H., Sebo, P. and Leclerc, C., Antigen targeting to CD11b allows efficient presentation of CD4+ and CD8+ T cell epitopes and in vivo Th1-polarized T cell priming. J. Immunol. 2004. 173: 60896097.
  • 25
    Preville, X., Ladant, D., Timmerman, B. and Leclerc, C., Eradication of established tumors by vaccination with recombinant Bordetella pertussis adenylate cyclase carrying the human papillomavirus 16 E7 oncoprotein. Cancer Res. 2005. 65: 641649.
  • 26
    Osicka, R., Osickova, A., Basar, T., Guermonprez, P., Rojas, M., Leclerc, C. and Sebo, P., Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites. Infect Immun. 2000. 68: 247256.
  • 27
    Mackova, J., Stasikova, J., Kutinova, L., Masin, J., Hainz, P., Simsova, M., Gabriel, P. et al., Prime/boost immunotherapy of HPV16-induced tumors with E7 protein delivered by Bordetella adenylate cyclase and modified vaccinia virus Ankara. Cancer Immunol. Immunother. 2006. 55: 3946.
  • 28
    Tartz, S., Kamanova, J., Simsova, M., Sebo, P., Bolte, S., Heussler, V., Fleischer, B. and Jacobs, T., Immunization with a circumsporozoite epitope fused to Bordetella pertussis adenylate cyclase in conjunction with cytotoxic T-lymphocyte-associated antigen 4 blockade confers protection against Plasmodium berghei liver-stage malaria. Infect Immun. 2006. 74: 22772285.
  • 29
    Mueller, A. K., Deckert, M., Heiss, K., Goetz, K., Matuschewski, K. and Schluter, D., Genetically attenuated Plasmodium berghei liver stages persist and elicit sterile protection primarily via CD8 T cells. Am. J. Pathol. 2007. 171: 107115.
  • 30
    Schmidt, N. W., Butler, N. S. and Harty, J. T., CD8 T cell immunity to Plasmodium permits generation of protective antibodies after repeated sporozoite challenge. Vaccine 2009. 27: 61036106.
  • 31
    Voehringer, D., Blaser, C., Brawand, P., Raulet, D. H., Hanke, T. and Pircher, H., Viral infections induce abundant numbers of senescent CD8 T cells. J. Immunol. 2001. 167: 48384843.
  • 32
    Hikono, H., Kohlmeier, J. E., Takamura, S., Wittmer, S. T., Roberts, A. D. and Woodland, D. L., Activation phenotype, rather than central- or effector-memory phenotype, predicts the recall efficacy of memory CD8+ T cells. J. Exp. Med. 2007. 204: 16251636.
  • 33
    Prlic, M., Sacks, J. A. and Bevan, M. J., Dissociating markers of senescence and protective ability in memory T cells. PLoS One 2012. 7: e32576.
  • 34
    Messer, R. J., Dittmer, U., Peterson, K. E. and Hasenkrug, K. J., Essential role for virus-neutralizing antibodies in sterilizing immunity against Friend retrovirus infection. Proc. Natl. Acad. Sci. USA 2004. 101: 1226012265.
  • 35
    Michaud, H. A., Gomard, T., Gros, L., Thiolon, K., Nasser, R., Jacquet, C., Hernandez, J. et al., A crucial role for infected-cell/antibody immune complexes in the enhancement of endogenous antiviral immunity by short passive immunotherapy. PLoS Pathog. 2010. 6: e1000948.
  • 36
    Bachmann, M. F., Hunziker, L., Zinkernagel, R. M., Storni, T. and Kopf, M., Maintenance of memory CTL responses by T helper cells and CD40-CD40 ligand: antibodies provide the key. Eur. J. Immunol. 2004. 34: 317326.
  • 37
    Nardin, E. H., Nussenzweig, R. S., McGregor, I. A. and Bryan, J. H., Antibodies to sporozoites: their frequent occurrence in individuals living in an area of hyperendemic malaria. Science 1979. 206: 597599.
  • 38
    Miller, K. D., Campbell, G. H., Nutman, T. B., Mulligan, M., Currie, B., Procell, P. M. and Roberts, J. M., Early acquisition of antibody to Plasmodium falciparum sporozoites in nonimmune temporary residents of Africa. J. Infect Dis. 1988. 158: 868871.
  • 39
    Ocana-Morgner, C., Mota, M. M. and Rodriguez, A., Malaria blood stage suppression of liver stage immunity by dendritic cells. J. Exp. Med. 2003. 197: 143151.
  • 40
    Ocana-Morgner, C., Wong, K. A. and Rodriguez, A., Interactions between dendritic cells and CD4+ T cells during Plasmodium infection. Malar. J. 2008. 7: 88.
  • 41
    Urban, B. C., Ferguson, D. J., Pain, A., Willcox, N., Plebanski, M., Austyn, J. M. and Roberts, D. J., Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 1999. 400: 7377.
  • 42
    Hirunpetcharat, C. and Good, M. F., Deletion of Plasmodium berghei-specific CD4+ T cells adoptively transferred into recipient mice after challenge with homologous parasite. Proc. Natl. Acad. Sci. USA 1998. 95: 17151720.
  • 43
    Wipasa, J., Xu, H., Stowers, A. and Good, M. F., Apoptotic deletion of Th cells specific for the 19-kDa carboxyl-terminal fragment of merozoite surface protein 1 during malaria infection. J. Immunol. 2001. 167: 39033909.
  • 44
    Kaniga, K., Uralil, J., Bliska, J. B. and Galan, J. E., A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurium. Mol. Microbiol. 1996. 21: 633641.
  • 45
    Hoiseth, S. K. and Stocker, B. A., Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 1981. 291: 238239.
  • 46
    Russmann, H., Shams, H., Poblete, F., Fu, Y., Galan, J. E. and Donis, R. O., Delivery of epitopes by the Salmonella type III secretion system for vaccine development. Science 1998. 281: 565568.
  • 47
    Kursar, M., Kohler, A., Kaufmann, S. H. and Mittrucker, H. W., Depletion of CD4+ T cells during immunization with nonviable Listeria monocytogenes causes enhanced CD8+ T cell-mediated protection against listeriosis. J. Immunol. 2004. 172: 31673172.