• 1
    Aronson, M., Hypothesis: involution of the thymus with aging-programmed and beneficial. Thymus 1991. 18: 713.
  • 2
    Dowling, M. R.andHodgkin, P. D., Why does the thymus involute? A selection-based hypothesis. Trends Immunol. 2009. 30: 295300.
  • 3
    Shanley, D. P., Aw, D., Manley, N. R.andPalmer, D. B., An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol. 2009. 30: 374381.
  • 4
    Billard, M. J., Gruver, A. L.andSempowski, G. D., Acute endotoxin-induced thymic atrophy is characterized by intrathymic inflammatory and wound healing responses. PLoS ONE 1999. 6: e17940.
  • 5
    Sutherland, J. S., Goldberg, G. L., Hammett, M. V., Uldrich, A. P., Berzins, S. P., Heng, T. S., Blazar, B. al.,Activation of thymic regeneration in mice and humans following androgen blockade. J. Immunol. 2005. 175: 27412753.
  • 6
    Savino, W., Dardenne, M., Velloso, L. A.andDayse Silva-Barbosa, S., The thymus is a common target in malnutrition and infection. Br. J. Nutr. 2007. 98(Suppl 1): S11S16.
  • 7
    Toti, P., De Felice, C., Stumpo, M., Schurfeld, K., Di Leo, L., Vatti, R., Bianciardi, al.,Acute thymic involution in fetuses and neonates with chorioamnionitis. Hum. Pathol. 2000. 31: 11211128.
  • 8
    Glavina-Durdov, M., Springer, O., Capkun, V., Saratlija-Novakovic, Z., Rozic, D.andBarle, M., The grade of acute thymus involution in neonates correlates with the duration of acute illness and with the percentage of lymphocytes in peripheral blood smear. Pathological study. Biol. Neonate 2003. 83: 229234.
  • 9
    Verinaud, L., Da Cruz-Hofling, M. A., Sakurada, J. K., Rangel, H. A., Vassallo, J., Wakelin, D., Sewell, H. al.,Immunodepression induced by Trypanosoma cruzi and mouse hepatitis virus type 3 is associated with thymus apoptosis. Clin. Diagn. Lab. Immunol. 1998. 5: 186191.
  • 10
    Godfraind, C., Holmes, K. V.and.Coutelier, J. P., Thymus involution induced by mouse hepatitis virus A59 in BALB/c mice. J. Virol. 1995. 69: 65416547.
  • 11
    King, C. C., Jamieson, B. D., Reddy, K., Bali, N., Concepcion, R. J.andAhmed, R., Viral infection of the thymus. J. Virol. 1992. 66: 31553160.
  • 12
    Anz, D., Thaler, R., Stephan, N., Waibler, Z., Trauscheid, M. J., Scholz, C., Kalinke, al.,Activation of melanoma differentiation-associated gene 5 causes rapid involution of the thymus. J. Immunol. 2009. 182: 60446050.
  • 13
    Schmidlin, H., Dontje, W., Groot, F., Ligthart, S. J., Colantonio, A. D., Oud, M. E., Schilder-Tol, E. al.,Stimulated plasmacytoid dendritic cells impair human T-cell development. Blood 2006. 108: 37923800.
  • 14
    Demoulins, T., Abdallah, A., Kettaf, N., Baron, M. L., Gerarduzzi, C., Gauchat, D., Gratton, al.,Reversible blockade of thymic output: an inherent part of TLR ligand-mediated immune response. J. Immunol. 2008. 181: 67576769.
  • 15
    Papadopoulou, A. S., Dooley, J., Linterman, M. A., Pierson, W., Ucar, O., Kyewski, B., Zuklys, al.,The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via suppression of the IFN-α receptor mediated by microRNA-29 a. Nat. Immunol. 2012. 13: 181187.
  • 16
    Taniguchi, T. and Takaoka, A., The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr. Opin. Immunol. 2002. 14: 111116.
  • 17
    Gray, D. H., Seach, N., Ueno, T., Milton, M. K., Liston, A., Lew, A. M., Goodnow, C. al.,Developmental kinetics, turnover and stimulatory capacity of thymic epithelial cells. Blood 2006. 108: 3777--3785.
  • 18
    Steinmann, G. G.andMuller-Hermelink, H. K., Age-related changes in the thymus-dependent immune system. Dtsch. Med. Wochenschr. 1985. 110: 13001307.
  • 19
    Zook, E. C., Krishack, P. A., Zhang, S., Zeleznik-Le, N. J., Firulli, A. B., Witte, P. L.andLe, P. T., Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells. Blood 2011. 118: 5723--5731.
  • 20
    Olsen, N. J., Olson, G., Viselli, S. M., Gu, X.andKovacs, W. J., Androgen receptors in thymic epithelium modulate thymus size and thymocyte development. Endocrinology 2001. 142: 12781283.
  • 21
    Ackland, J. F., Schwartz, N. B., Mayo, K. E.andDodson, R. E., Nonsteroidal signals originating in the gonads. Physiol. Rev. 1992. 72: 731787.
  • 22
    Staples, J. E., Gasiewicz, T. A., Fiore, N. C., Lubahn, D. B., Korach, K. S.andSilverstone, A. E., Estrogen receptor alpha is necessary in thymic development and estradiol-induced thymic alterations. J. Immunol. 1999. 163: 41684174.
  • 23
    Morley, J. E., Hormones and the aging process. J. Am. Geriatr. Soc. 2003. 51: S333337.
  • 24
    Min, H., Montecino-Rodriguez, E.andDorshkind, K., Reassessing the role of growth hormone and sex steroids in thymic involution. Clin. Immunol. 2006. 118: 117123.
  • 25
    Yang, H., Youm, Y. H.andDixit, V. D., Inhibition of thymic adipogenesis by caloric restriction is coupled with reduction in age-related thymic involution. J. Immunol. 2009. 183: 30403052.
  • 26
    Howard, J. K., Lord, G. M., Matarese, G., Vendetti, S., Ghatei, M. A., Ritter, M. A., Lechler, R. al.,Leptin protects mice from starvation-induced lymphoid atrophy and increases thymic cellularity in ob/ob mice. J. Clin. Invest. 1999. 104: 10511059.
  • 27
    Gruver, A. L., Ventevogel, M. S.andSempowski, G. D., Leptin receptor is expressed in thymus medulla and leptin protects against thymic remodeling during endotoxemia-induced thymus involution. J. Endocrinol. 2009. 203: 7585.
  • 28
    Fantuzzi, G.andFaggioni, R., Leptin in the regulation of immunity, inflammation, and hematopoiesis. J. Leukoc. Biol. 2000. 68: 437446.
  • 29
    Pond, C. M.andMattacks, C. A., Interactions between adipose tissue around lymph nodes and lymphoid cells in vitro. J. Lipid Res. 1995. 36: 22192231.
  • 30
    Devlin, M. J., Cloutier, A. M., Thomas, N. A., Panus, D. A., Lotinun, S., Pinz, I., Baron, R., et al.,Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J. Bone Miner. Res. 25: 20782088.
  • 31
    Jenkinson, W. E., Jenkinson, E. J.andAnderson, G., Differential requirement for mesenchyme in the proliferation and maturation of thymic epithelial progenitors. J. Exp. Med. 2003. 198: 325332.
  • 32
    Jenkinson, W. E., Rossi, S. W., Parnell, S. M., Jenkinson, E. J. and Anderson, G., PDGFRalpha-expressing mesenchyme regulates thymus growth and the availability of intrathymic niches. Blood 2007. 109: 954960.
  • 33
    Dooley, J., Erickson, M., Larochelle, W. J., Gillard, G. O.andFarr, A. G., FGFR2IIIb signaling regulates thymic epithelial differentiation. Dev. Dyn. 2007. 236: 34593471.
  • 34
    Revest, J. M., Suniara, R. K., Kerr, K., Owen, J. J.andDickson, C., Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J. Immunol. 2001. 167: 19541961.
  • 35
    Phillips, J. A., Brondstetter, T. I., English, C. A., Lee, H. E., Virts, E. L. and Thoman, M. L., IL-7 gene therapy in aging restores early thymopoiesis without reversing involution. J. Immunol. 2004. 173: 48674874.
  • 36
    Savino, W., Boitard, C., Bach, J. F.andDardenne, M., Studies on the thymus in nonobese diabetic mouse. I. Changes in the microenvironmental compartments. Lab. Invest. 1991. 64: 405-417.
  • 37
    Sempowski, G. D., Hale, L. P., Sundy, J. S., Massey, J. M., Koup, R. A., Douek, D. C., Patel, D. al.,Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy. J. Immunol. 2000. 164: 21802187.
  • 38
    Rega, G., Kaun, C., Demyanets, S., Pfaffenberger, S., Rychli, K., Hohensinner, P. J., Kastl, S. al., Vascular endothelial growth factor is induced by the inflammatory cytokines interleukin-6 and oncostatin m in human adipose tissue in vitro and in murine adipose tissue in vivo. Arterioscler. Thromb. Vasc. Biol. 2007. 27: 15871595.
  • 39
    Rosenow, A., Arrey, T. N., Bouwman, F. G., Noben, J. P., Wabitsch, M., Mariman, E. C., Karas, al.,Identification of novel human adipocyte secreted proteins by using SGBS cells. J. Proteome Res. 2010. 9: 53895401.
  • 40
    Trayhurn, P.andWood, I. S., Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr. 2004. 92: 347355.
  • 41
    Martinez Ruiz, M., Llobell Segui, G., Peralba Vano, J. L.andToral Revuelta, J. R., Evaluation of the efficacy of naltrexone in alcoholism by the determination of serum carbohydrate-deficient transferrin. Ann. Med. Int. 1995. 12: 589592.
  • 42
    Lepique, A. P., Palencia, S., Irjala, H.andPetrie, H. T., Characterization of vascular adhesion molecules that may facilitate progenitor homing in the post-natal mouse thymus. Clin. Dev. Immunol. 2003. 10: 2733.
  • 43
    Gossens, K., Naus, S., Corbel, S. Y., Lin, S., Rossi, F. M., Kast, J.andZiltener, H. J., Thymic progenitor homing and lymphocyte homeostasis are linked via S1P-controlled expression of thymic P-selectin/CCL25. J. Exp. Med. 2009. 206: 761778.
  • 44
    Kyewski, B. A., Seeding of thymic microenvironments defined by distinct thymocyte-stromal cell interactions is developmentally controlled. J. Exp. Med. 1987. 166: 520538.
  • 45
    Lind, E. F., Prockop, S. E., Porritt, H. E.andPetrie, H. T., Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J. Exp. Med. 2001. 194: 127134.
  • 46
    Mori, K., Itoi, M., Tsukamoto, N., Kubo, H.andAmagai, T., The perivascular space as a path of hematopoietic progenitor cells and mature T cells between the blood circulation and the thymic parenchyma. Int. Immunol. 2007. 19: 745753.
  • 47
    Kato, S., Thymic microvascular system. Microsc. Res. Tech. 1997. 38: 287299.
  • 48
    Cavallotti, C., D'Andrea, V., Tonnarini, G.andBruzzone, P., Age-related changes in the human thymus studied with scanning electron microscopy. Microsc. Res. Tech. 2008. 71: 573578.
  • 49
    Kendall, M. D.andClarke, A. G., The thymus in the mouse changes its activity during pregnancy: a study of the microenvironment. J. Anat. 2000. 197(Pt 3): 393411.
  • 50
    Tibbetts, T. A., DeMayo, F., Rich, S., Conneely, O. M.andO'Malley, B. W., Progesterone receptors in the thymus are required for thymic involution during pregnancy and for normal fertility. Proc. Natl. Acad. Sci. USA 1999. 96: 1202112026.
  • 51
    Rijhsinghani, A. G., Thompson, K., Bhatia, S. K.andWaldschmidt, T. J., Estrogen blocks early T cell development in the thymus. Am. J. Reprod. Immunol. 1996. 36: 269277.
  • 52
    Zoller, A. L., Schnell, F. J.andKersh, G. J., Murine pregnancy leads to reduced proliferation of maternal thymocytes and decreased thymic emigration. Immunology 2007. 121: 207215.
  • 53
    Dixit, V. D., Sridaran, R., Edmonsond, M. A., Taub, D.andThompson, W. E., Gonadotropin-releasing hormone attenuates pregnancy-associated thymic involution and modulates the expression of antiproliferative gene product prohibitin. Endocrinology 2003. 144: 14961505.
  • 54
    Medina, K. L., Smithson, G.andKincade, P. W., Suppression of B lymphopoiesis during normal pregnancy. J. Exp. Med. 1993. 178: 15071515.
  • 55
    Medina, K. L.andKincade, P. W., Pregnancy-related steroids are potential negative regulators of B lymphopoiesis. Proc. Natl. Acad. Sci. USA 1994. 91: 53825386.
  • 56
    Hoffman-Goetz, L.andZajchowski, S., In vitro apoptosis of lymphocytes after exposure to levels of corticosterone observed following submaximal exercise. J. Sports Med. Phys. Fitness 1999. 39: 269274.
  • 57
    Dominguez-Gerpe, L.andRey-Mendez, M., Time-course of the murine lymphoid tissue involution during and following stressor exposure. Life Sci. 1997. 61: 10191027.
  • 58
    Ko, K., Yamazaki, S., Nakamura, K., Nishioka, T., Hirota, K., Yamaguchi, T., Shimizu, al.,Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells. J. Exp. Med. 2005. 202: 885891.
  • 59
    Watanabe, T., Totoki, Y., Toyoda, A., Kaneda, M., Kuramochi-Miyagawa, S., Obata, Y., Chiba, al.,Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 2008. 453: 539543.
  • 60
    Altevogt, P., Michaelis, M.andKyewski, B., Identical forms of the CD2 antigen expressed by mouse T and B lymphocytes. Eur. J. Immunol. 1989. 19: 15091512.
  • 61
    Luz, C., Dornelles, F., Preissler, T., Collaziol, D., da Cruz, I. M.andBauer, M. E., Impact of psychological and endocrine factors on cytokine production of healthy elderly people. Mech. Ageing Dev. 2003. 124: 887895.
  • 62
    Heuser, I., Deuschle, M., Luppa, P., Schweiger, U., Standhardt, H.and Weber, B., Increased diurnal plasma concentrations of dehydroepiandrosterone in depressed patients. J. Clin. Endocrinol. Metab. 1998. 83: 31303133.
  • 63
    Ashwell, J. D., Lu, F. W.andVacchio, M. S., Glucocorticoids in T cell development and function*. Annu. Rev. Immunol. 2000. 18: 309345.
  • 64
    Purton, J. F., Boyd, R. L., Cole, T. J.andGodfrey, D. I., Intrathymic T cell development and selection proceeds normally in the absence of glucocorticoid receptor signaling. Immunity 2000. 13: 179186.
  • 65
    Purton, J. F., Zhan, Y., Liddicoat, D. R., Hardy, C. L., Lew, A. M., Cole, T. J.andGodfrey, D. I., Glucocorticoid receptor deficient thymic and peripheral T cells develop normally in adult mice. Eur. J. Immunol. 2002. 32: 35463555.
  • 66
    Daynes, R. A., Araneo, B. A., Ershler, W. B., Maloney, C., Li, G. Z.andRyu, S. Y., Altered regulation of IL-6 production with normal aging. Possible linkage to the age-associated decline in dehydroepiandrosterone and its sulfated derivative. J. Immunol. 1993. 150: 52195230.
  • 67
    Malarkey, W. B., Wu, H., Cacioppo, J. T., Malarkey, K. L., Poehlmann, K. M., Glaser, al.,Chronic stress down-regulates growth hormone gene expression in peripheral blood mononuclear cells of older adults. Endocrine 1996. 5: 3339.
  • 68
    Hadjiconstantinou, M., McGuire, L., Duchemin, A. M., Laskowski, B., Kiecolt-Glaser, J.andGlaser, R., Changes in plasma nerve growth factor levels in older adults associated with chronic stress. J. Neuroimmunol. 2001. 116: 102106.