SEARCH

SEARCH BY CITATION

References

  • 1
    Brancato, S. K. and Albina, J. E., Wound macrophages as key regulators of repair: origin, phenotype, and function. Am. J. Pathol. 2011. 178: 1925.
  • 2
    Kreider, T., Anthony, R. M., Urban, J. F., Jr. and Gause, W. C., Alternatively activated macrophages in helminth infections. Curr. Opin. Immunol. 2007. 19: 448453.
  • 3
    Shearer, J. D., Richards, J. R., Mills, C. D. and Caldwell, M. D., Differential regulation of macrophage arginine metabolism: a proposed role in wound healing. Am. J. Physiol. 1997. 272: E181E190.
  • 4
    Wynn, T. A. and Barron, L., Macrophages: master regulators of inflammation and fibrosis. Semin. Liver Dis. 2010. 30: 245257.
  • 5
    Hesse, M., Modolell, M., La Flamme, A. C., Schito, M., Fuentes, J. M., Cheever, A. W., Pearce, E. J. et al., Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by the pattern of L-arginine metabolism. J. Immunol. 2001. 167: 65336544.
  • 6
    Vincendeau, P., Gobert, A. P., Daulouede, S., Moynet, D. and Mossalayi, M. D., Arginases in parasitic diseases. Trends Parasitol. 2003. 19: 912.
  • 7
    Kropf, P., Fuentes, J. M., Fahnrich, E., Arpa, L., Herath, S., Weber, V., Soler, G. et al., Arginase and polyamine synthesis are key factors in the regulation of experimental leishmaniasis in vivo. Faseb. J. 2005. 19: 10001002.
  • 8
    Munder, M., Arginase: an emerging key player in the mammalian immune system. Br. J. Pharmacol. 2009. 158: 638651.
  • 9
    Takeuch, O. and Akira, S., Epigenetic control of macrophage polarization. Eur. J. Immunol. 2011. 41: 24902493.
  • 10
    Wang, Z., Zang, C., Cui, K., Schones, D. E., Barski, A., Peng, W. and Zhao, K., Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 2009. 138: 10191031.
  • 11
    Haberland, M., Montgomery, R. L. and Olson, E. N., The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 2009. 10: 3242.
  • 12
    Spange, S., Wagner, T., Heinzel, T. and Kramer, O. H., Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int. J. Biochem. Cell Biol. 2009. 41: 185198.
  • 13
    Choudhary, C., Kumar, C., Gnad, F., Nielsen, M. L., Rehman, M., Walther, T. C., Olsen, J. V. et al., Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009. 325: 834840.
  • 14
    Adcock, I. M., HDAC inhibitors as anti-inflammatory agents. Br. J. Pharmacol. 2007. 150: 829831.
  • 15
    Grabiec, A. M., Tak, P. P. and Reedquist, K. A., Targeting histone deacetylase activity in rheumatoid arthritis and asthma as prototypes of inflammatory disease: should we keep our HATs on? Arthritis Res. Ther. 2008. 10: 226.
  • 16
    Brogdon, J. L., Xu, Y., Szabo, S. J., An, S., Buxton, F., Cohen, D. and Huang, Q., Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function. Blood 2007. 109: 11231130.
  • 17
    Roger, T., Lugrin, J., Le Roy, D., Goy, G., Mombelli, M., Koessler, T., Ding, X. C. et al., Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection. Blood 2011. 117: 12051217.
  • 18
    Mullican, S. E., Gaddis, C. A., Alenghat, T., Nair, M. G., Giacomin, P. R., Everett, L. J., Feng, D. et al., Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes. Dev. 2011. 25: 24802488.
  • 19
    Haffner, I., Teupser, D., Holdt, L. M., Ernst, J., Burkhardt, R. and Thiery, J., Regulation of arginase-1 expression in macrophages by a protein kinase A type I and histone deacetylase dependent pathway. J. Cell Biochem. 2008. 103: 520527.
  • 20
    Xaus, J., Cardo, M., Valledor, A. F., Soler, C., Lloberas, J. and Celada, A., Interferon gamma induces the expression of p21waf-1 and arrests macrophage cell cycle, preventing induction of apoptosis. Immunity 1999. 11: 103113.
  • 21
    Sebastian, C., Serra, M., Yeramian, A., Serrat, N., Lloberas, J. and Celada, A., Deacetylase activity is required for STAT5-dependent GM-CSF functional activity in macrophages and differentiation to dendritic cells. J. Immunol. 2008. 180: 58985906.
  • 22
    Arpa, L., Valledor, A. F., Lloberas, J. and Celada, A., IL-4 blocks M-CSF-dependent macrophage proliferation by inducing p21(Waf1) in a STAT6-dependent way. Eur. J. Immunol. 2009. 39: 514526.
  • 23
    Yeramian, A., Martin, L., Serrat, N., Arpa, L., Soler, C., Bertran, J., McLeod, C. et al., Arginine transport via cationic amino acid transporter 2 plays a critical regulatory role in classical or alternative activation of macrophages. J. Immunol. 2006. 176: 59185924.
  • 24
    Classen, A., Lloberas, J. and Celada, A., Macrophage activation: classical versus alternative. Methods Mol. Biol. 2009. 531: 2943.
  • 25
    te Poele, R. H., Okorokov, A. L. and Joel, S. P., RNA synthesis block by 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) triggers p53-dependent apoptosis in human colon carcinoma cells. Oncogene 1999. 18: 57655772.
  • 26
    Celada, A., Klemsz, M. J. and Maki, R. A., Interferon-gamma activates multiple pathways to regulate the expression of the genes for major histocompatibility class II I-A beta, tumor necrosis factor and complement component C3 in mouse macrophages. Eur. J. Immunol. 1989. 19: 11031109.
  • 27
    Casals, C., Barrachina, M., Serra, M., Lloberas, J. and Celada, A., Lipopolysaccharide up-regulates MHC class II expression on dendritic cells through an AP-1 enhancer without affecting the levels of CIITA. J. Immunol. 2007. 178: 63076315.
  • 28
    Brewer, G., An A + U-rich element RNA-binding factor regulates c-myc mRNA stability in vitro. Mol. Cell Biol. 1991. 11: 24602466.
  • 29
    Pauleau, A. L., Rutschman, R., Lang, R., Pernis, A., Watowich, S. S. and Murray, P. J., Enhancer-mediated control of macrophage-specific arginase I expression. J. Immunol. 2004. 172: 75657573.
  • 30
    Gray, M. J., Poljakovic, M., Kepka-Lenhart, D. and Morris, S. M., Jr., Induction of arginase I transcription by IL-4 requires a composite DNA response element for STAT6 and C/EBPbeta. Gene 2005. 353: 98106.
  • 31
    Stutz, A. M., Pickart, L. A., Trifilieff, A., Baumruker, T., Prieschl-Strassmayr, E. and Woisetschlager, M., The Th2 cell cytokines IL-4 and IL-13 regulate found in inflammatory zone 1/resistin-like molecule alpha gene expression by a STAT6 and CCAAT/enhancer-binding protein-dependent mechanism. J. Immunol. 2003. 170: 17891796.
  • 32
    Welch, J. S., Escoubet-Lozach, L., Sykes, D. B., Liddiard, K., Greaves, D. R. and Glass, C. K., TH2 cytokines and allergic challenge induce Ym1 expression in macrophages by a STAT6-dependent mechanism. J. Biol. Chem. 2002. 277: 4282142829.
  • 33
    Hou, J., Schindler, U., Henzel, W. J., Ho, T. C., Brasseur, M. and McKnight, S. L., An interleukin-4-induced transcription factor: IL-4 stat. Science 1994. 265: 17011706.
  • 34
    Mikita, T., Campbell, D., Wu, P., Williamson, K. and Schindler, U., Requirements for interleukin-4-induced gene expression and functional characterization of Stat6. Mol. Cell Biol. 1996. 16: 58115820.
  • 35
    Alam, T., An, M. R. and Papaconstantinou, J., Differential expression of three C/EBP isoforms in multiple tissues during the acute phase response. J. Biol. Chem. 1992. 267: 50215024.
  • 36
    Xu, G., Zhang, Y., Zhang, L., Roberts, A. I. and Shi, Y., C/EBPbeta mediates synergistic upregulation of gene expression by interferon-gamma and tumor necrosis factor-alpha in bone marrow-derived mesenchymal stem cells. Stem Cells 2009. 27: 942948.
  • 37
    Cardinaux, J. R., Allaman, I. and Magistretti, P. J., Pro-inflammatory cytokines induce the transcription factors C/EBPbeta and C/EBPdelta in astrocytes. Glia. 2000. 29: 9197.
  • 38
    Descombes, P. and Schibler, U., A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 1991. 67: 569579.
  • 39
    Welm, A. L., Mackey, S. L., Timchenko, L. T., Darlington, G. J. and Timchenko, N. A., Translational induction of liver-enriched transcriptional inhibitory protein during acute phase response leads to repression of CCAAT/enhancer binding protein alpha mRNA. J. Biol. Chem. 2000. 275: 2740627413.
  • 40
    Albina, J. E., Mahoney, E. J., Daley, J. M., Wesche, D. E., Morris, S. M., Jr. and Reichner, J. S., Macrophage arginase regulation by CCAAT/enhancer-binding protein beta. Shock 2005. 23: 168172.
  • 41
    Xu, M., Nie, L., Kim, S. H. and Sun, X. H., STAT5-induced Id-1 transcription involves recruitment of HDAC1 and deacetylation of C/EBPbeta. EMBO J. 2003. 22: 893904.
  • 42
    Gregory, P. D., Wagner, K. and Horz, W., Histone acetylation and chromatin remodeling. Exp. Cell Res. 2001. 265: 195202.
  • 43
    Razeto, A., Ramakrishnan, V., Litterst, C. M., Giller, K., Griesinger, C., Carlomagno, T., Lakomek, N. et al., Structure of the NCoA-1/SRC-1 PAS-B domain bound to the LXXLL motif of the STAT6 transactivation domain. J. Mol. Biol. 2004. 336: 319329.
  • 44
    Gingras, S., Simard, J., Groner, B. and Pfitzner, E., P300/CBP is required for transcriptional induction by interleukin-4 and interacts with Stat6. Nucleic Acids Res. 1999. 27: 27222729.
  • 45
    Arimura, A., vn Peer, M., Schroder, A. J. and Rothman, P. B., The transcriptional co-activator p/CIP (NCoA-3) is up-regulated by STAT6 and serves as a positive regulator of transcriptional activation by STAT6. J. Biol. Chem. 2004. 279: 3110531112.
  • 46
    Kouzarides, T., Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 2000. 19: 11761179.
  • 47
    Szanto, A., Balint, B. L., Nagy, Z. S., Barta, E., Dezso, B., Pap, A., Szeles, L. et al., STAT6 transcription factor is a facilitator of the nuclear receptor PPARgamma-regulated gene expression in macrophages and dendritic cells. Immunity 2010. 33: 699712.
  • 48
    Ruffell, D., Mourkioti, F., Gambardella, A., Kirstetter, P., Lopez, R. G., Rosenthal, N. and Nerlov, C., A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc. Natl. Acad. Sci. USA 2009. 106: 1747517480.
  • 49
    Hasselgren, P. O., Ubiquitination, phosphorylation, and acetylation–triple threat in muscle wasting. J. Cell Physiol. 2007. 213: 679689.
  • 50
    Weisser, S. B., McLarren, K. W., Voglmaier, N., van Netten-Thomas, C. J., Antov, A., Flavell, R. A. and Sly, L. M., Alternative activation of macrophages by IL-4 requires SHIP degradation. Eur. J. Immunol. 2011. 41: 17421753.
  • 51
    Celada, A., Gray, P. W., Rinderknecht, E. and Schreiber, R. D., Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity. J. Exp. Med. 1984. 160: 5574.
  • 52
    Sanchez-Tillo, E., Comalada, M., Farrera, C., Valledor, A. F., Lloberas, J. and Celada, A., Macrophage-colony-stimulating factor-induced proliferation and lipopolysaccharide-dependent activation of macrophages requires raf-1 phosphorylation to induce mitogen kinase phosphatase-1 expression. J. Immunol. 2006. 176: 65946602.
  • 53
    Valledor, A. F., Xaus, J., Marques, L. and Celada, A., Macrophage colony-stimulating factor induces the expression of mitogen-activated protein kinase phosphatase-1 through a protein kinase C-dependent pathway. J. Immunol. 1999. 163: 24522462.
  • 54
    Snedecor, G. and Cochran, W., Statistical methods. Iowa State University Press, Ames, Iowa, 1967.