SEARCH

SEARCH BY CITATION

References

  • 1
    Morgan, D. A., Ruscetti, F. W. and Gallo, R., Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 1976. 193: 10071008.
  • 2
    Malek, T. R., The biology of interleukin-2. Annu. Rev. Immunol. 2008. 26: 453479.
  • 3
    Dooms, H. and Abbas, A. K., Control of CD4+ T-cell memory by cytokines and costimulators. Immunol. Rev. 2006. 211: 2338.
  • 4
    Refaeli, Y., Van Parijs, L., London, C. A., Tschopp, J. and Abbas, A. K., Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 1998. 8: 615623.
  • 5
    Yu, A., Olosz, F., Choi, C. Y. and Malek, T. R., Efficient internalization of IL-2 depends on the distal portion of the cytoplasmic tail of the IL-2R common gamma-chain and a lymphoid cell environment. J. Immunol. 2000. 165: 25562562.
  • 6
    Hemar, A., Subtil, A., Lieb, M., Morelon, E., Hellio, R. and Dautry-Varsat, A., Endocytosis of interleukin 2 receptors in human T lymphocytes: distinct intracellular localization and fate of the receptor alpha, beta, and gamma chains. J. Cell Biol. 1995. 129: 5564.
  • 7
    Yu, A. and Malek, T. R., The proteasome regulates receptor-mediated endocytosis of interleukin-2. J. Biol. Chem. 2001. 276: 381385.
  • 8
    Malek, T. R. and Bayer, A. L., Tolerance, not immunity, crucially depends on IL-2. Nat. Rev. Immunol. 2004. 4: 665674.
  • 9
    Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. and Toda, M., Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 1995. 155: 11511164.
  • 10
    Antony, P. A. and Restifo, N. P., CD4+CD25 +T regulatory cells, immunotherapy of cancer, and interleukin-2. J. Immunother. 2005. 28: 120128.
  • 11
    Papiernik, M., de Moraes, M. L., Pontoux, C., Vasseur, F. and Penit, C., Regulatory CD4 T cells: expression of IL-2R alpha chain, resistance to clonal deletion and IL-2 dependency. Int. Immunol. 1998. 10: 371378.
  • 12
    Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. and Rudensky, A. Y., A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 2005. 6: 11421151.
  • 13
    Setoguchi, R., Hori, S., Takahashi, T. and Sakaguchi, S., Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 2005. 201: 723735.
  • 14
    Willerford, D. M., Chen, J., Ferry, J. A., Davidson, L., Ma, A. and Alt, F. W., Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 1995. 3: 521530.
  • 15
    Furtado, G. C., Curotto de Lafaille, M. A., Kutchukhidze, N. and Lafaille, J. J., Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J. Exp. Med. 2002. 196: 851857.
  • 16
    de Goer de Herve, M. G., Gonzales, E., Hendel-Chavez, H., Decline, J. L., Mourier, O., Abbed, K., Jacquemin, E. et al., CD25 appears non essential for human peripheral T(reg) maintenance in vivo. PloS one 2010. 5: e11784.
  • 17
    Wang, Z., Shi, B. Y., Qian, Y. Y., Cai, M. and Wang, Q., Short-term anti-CD25 monoclonal antibody administration down-regulated CD25 expression without eliminating the neogenetic functional regulatory T cells in kidney transplantation. Clin. Exp. Immunol. 2009. 155: 496503.
  • 18
    Vondran, F. W., Timrott, K., Tross, J., Kollrich, S., Schwarz, A., Lehner, F., Klempnauer, J. et al., Impact of Basiliximab on regulatory T-cells early after kidney transplantation: down-regulation of CD25 by receptor modulation. Transplant Int. 2010. 23: 514523.
  • 19
    Wuest, S. C., Edwan, J. H., Martin, J. F., Han, S., Perry, J. S., Cartagena, C. M., Matsuura, E. et al., A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nat. Med. 2011. 17: 604609.
  • 20
    Cohen, A. C., Nadeau, K. C., Tu, W., Hwa, V., Dionis, K., Bezrodnik, L., Teper, A. et al., Cutting edge: decreased accumulation and regulatory function of CD4+ CD25(high) T cells in human STAT5b deficiency. J. Immunol. 2006. 177: 27702774.
  • 21
    Sharfe, N., Dadi, H. K., Shahar, M. and Roifman, C. M., Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc. Natl. Acad. Sci. USA 1997. 94: 31683171.
  • 22
    Caudy, A. A., Reddy, S. T., Chatila, T., Atkinson, J. P. and Verbsky, J. W., CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J. allergy Clin. Immunol. 2007. 119: 482487.
  • 23
    Aoki, C. A., Roifman, C. M., Lian, Z. X., Bowlus, C. L., Norman, G. L., Shoenfeld, Y., Mackay, I. R. et al., IL-2 receptor alpha deficiency and features of primary biliary cirrhosis. J. Autoimmun. 2006. 27: 5053.
  • 24
    Roifman, C. M., Human IL-2 receptor alpha chain deficiency. Pediatr. Res. 2000. 48: 611.
  • 25
    Lee, R. W., Creed, T. J., Schewitz, L. P., Newcomb, P. V., Nicholson, L. B., Dick, A. D. and Dayan, C. M., CD4+CD25(int) T cells in inflammatory diseases refractory to treatment with glucocorticoids. J. Immunol. 2007. 179: 79417948.
  • 26
    Pitcher, C. J., Hagen, S. I., Walker, J. M., Lum, R., Mitchell, B. L., Maino, V. C., Axthelm, M. K. et al., Development and homeostasis of T cell memory in rhesus macaque. J. Immunol. 2002. 168: 2943.
  • 27
    Merkenschlager, M., Terry, L., Edwards, R. and Beverley, P. C., Limiting dilution analysis of proliferative responses in human lymphocyte populations defined by the monoclonal antibody UCHL1: implications for differential CD45 expression in T cell memory formation. Eur. J. Immunol. 1988. 18: 16531661.
  • 28
    Liu, W., Putnam, A. L., Xu-Yu, Z., Szot, G. L., Lee, M. R., Zhu, S., Gottlieb, P. A. et al., CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 2006. 203: 17011711.
  • 29
    Duftner, C., Goldberger, C., Falkenbach, A., Wurzner, R., Falkensammer, B., Pfeiffer, K. P., Maerker-Hermann, E. et al., Prevalence, clinical relevance and characterization of circulating cytotoxic CD4+CD28- T cells in ankylosing spondylitis. Arthritis Res. Ther. 2003. 5: R292R300.
  • 30
    Thewissen, M., Somers, V., Hellings, N., Fraussen, J., Damoiseaux, J. and Stinissen, P., CD4+CD28null T cells in autoimmune disease: pathogenic features and decreased susceptibility to immunoregulation. J. Immunol. 2007. 179: 65146523.
  • 31
    van Leeuwen, E. M., Remmerswaal, E. B., Vossen, M. T., Rowshani, A. T., Wertheim-van Dillen, P. M., van Lier, R. A. and ten Berge, I. J., Emergence of a CD4+CD28- granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection. J. Immunol. 2004. 173: 18341841.
  • 32
    Sallusto, F., Lenig, D., Forster, R., Lipp, M. and Lanzavecchia, A., Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999. 401: 708712.
  • 33
    Sallusto, F., Geginat, J. and Lanzavecchia, A., Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 2004. 22: 745763.
  • 34
    Okoye, A., Meier-Schellersheim, M., Brenchley, J. M., Hagen, S. I., Walker, J. M., Rohankhedkar, M., Lum, R. et al., Progressive CD4+ central memory T cell decline results in CD4+ effector memory insufficiency and overt disease in chronic SIV infection. J. Exp. Med. 2007. 204: 21712185.
  • 35
    Pearce, E. L., Mullen, A. C., Martins, G. A., Krawczyk, C. M., Hutchins, A. S., Zediak, V. P., Banica, M. et al., Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 2003. 302: 10411043.
  • 36
    Intlekofer, A. M., Takemoto, N., Wherry, E. J., Longworth, S. A., Northrup, J. T., Palanivel, V. R., Mullen, A. C. et al., Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 2005. 6: 12361244.
  • 37
    Stark, S. and Watzl, C., 2B4 (CD244), NTB-A and CRACC (CS1) stimulate cytotoxicity but no proliferation in human NK cells. Int. Immunol. 2006. 18: 241247.
  • 38
    Watanabe, T., Suzuki, J., Mitsuo, A., Nakano, S., Tamayama, Y., Katagiri, A., Amano, H. et al., Striking alteration of some populations of T/B cells in systemic lupus erythematosus: relationship to expression of CD62L or some chemokine receptors. Lupus 2008. 17: 2633.
  • 39
    Patschan, S., Dolff, S., Kribben, A., Durig, J., Patschan, D., Wilde, B., Specker, C. et al., CD134 expression on CD4+ T cells is associated with nephritis and disease activity in patients with systemic lupus erythematosus. Clin. Exp. Immunol. 2006. 145: 235242.
  • 40
    Uchiyama, T., Broder, S. and Waldmann, T. A., A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T cells. I. Production of anti-Tac monoclonal antibody and distribution of Tac (+) cells. J. Immunol. 1981. 126: 13931397.
  • 41
    Kalia, V., Sarkar, S., Subramaniam, S., Haining, W. N., Smith, K. A. and Ahmed, R., Prolonged interleukin-2Ralpha expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity 2010. 32: 91103.
  • 42
    Depper, J. M., Leonard, W. J., Drogula, C., Kronke, M., Waldmann, T. A. and Greene, W. C., Interleukin 2 (IL-2) augments transcription of the IL-2 receptor gene. Proc. Natl. Acad. Sci. USA 1985. 82: 42304234.
  • 43
    Thornton, A. M. and Shevach, E. M., CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 1998. 188: 287296.
  • 44
    Yao, Z., Kanno, Y., Kerenyi, M., Stephens, G., Durant, L., Watford, W. T., Laurence, A. et al., Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 2007. 109: 43684375.
  • 45
    Berretta, F., St-Pierre, J., Piccirillo, C. A. and Stevenson, M. M., IL-2 contributes to maintaining a balance between CD4+Foxp3+ regulatory T cells and effector CD4+ T cells required for immune control of blood-stage malaria infection. J. Immunol. 2011. 186: 48624871.
  • 46
    Brinster, C. and Shevach, E. M., Costimulatory effects of IL-1 on the expansion/differentiation of CD4+CD25+Foxp3+ and CD4+CD25+Foxp3- T cells. J. Leukoc. Biol. 2008. 84: 480487.
  • 47
    Yarkoni, S., Sagiv, Y., Kaminitz, A., Farkas, D. L. and Askenasy, N., Targeted therapy to the IL-2R using diphtheria toxin and caspase-3 fusion proteins modulates Treg and ameliorates inflammatory colitis. Eur. J. Immunol. 2009. 39: 28502864.
  • 48
    Lee, Y. K., Menezes, J. S., Umesaki, Y. and Mazmanian, S. K., Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 2011. 108(Suppl 1): 46154622.
  • 49
    Steiger, J., Nickerson, P. W., Steurer, W., Moscovitch-Lopatin, M. and Strom, T. B., IL-2 knockout recipient mice reject islet cell allografts. J. Immunol. 1995. 155: 489498.
  • 50
    Dai, Z., Konieczny, B. T., Baddoura, F. K. and Lakkis, F. G., Impaired alloantigen-mediated T cell apoptosis and failure to induce long-term allograft survival in IL-2-deficient mice. J. Immunol. 1998. 161: 16591663.
  • 51
    Jacobs, J. F., Punt, C. J., Lesterhuis, W. J., Sutmuller, R. P., Brouwer, H. M., Scharenborg, N. M., Klasen, I. S. et al., Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin. Cancer Res. 2010. 16: 50675078.
  • 52
    Mestas, J. and Hughes, C. C., Of mice and not men: differences between mouse and human immunology. J. Immunol. 2004. 172: 27312738.
  • 53
    Brusko, T. M., Wasserfall, C. H., Hulme, M. A., Cabrera, R., Schatz, D. and Atkinson, M. A., Influence of membrane CD25 stability on T lymphocyte activity: implications for immunoregulation. PloS one 2009. 4: e7980.
  • 54
    Hochberg, M. C., Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997. 40: 1725.