• 1
    Round, J. L., O'Connell, R. M. and Mazmanian, S. K., Coordination of tolerogenic immune responses by the commensal microbiota. J. Autoimmun. 2010. 34: J220J225.
  • 2
    Hooper, L. V. and Macpherson, A. J., Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 2010. 10: 159169.
  • 3
    Allez, M., Tieng, V., Nakazawa, A., Treton, X., Pacault, V., Dulphy, N., Caillat-Zucman, S. et al., CD4+NKG2D+ T cells in Crohn's disease mediate inflammatory and cytotoxic responses through MICA interactions. Gastroenterology 2007. 132: 23462358.
  • 4
    Ito, Y., Kanai, T., Totsuka, T., Okamoto, R., Tsuchiya, K., Nemoto, Y., Yoshioka, A. et al., Blockade of NKG2D signaling prevents the development of murine CD4+ T cell-mediated colitis. Am. J. Physiol Gastrointest. Liver Physiol. 2008. 294: G199G207.
  • 5
    Hue, S., Mention, J. J., Monteiro, R. C., Zhang, S., Cellier, C., Schmitz, J., Verkarre, V. et al., A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 2004. 21: 367377.
  • 6
    Meresse, B., Chen, Z., Ciszewski, C., Tretiakova, M., Bhagat, G., Krausz, T. N., Raulet, D. H. et al., Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 2004. 21: 357366.
  • 7
    Tieng, V., Le, B. C., du, M. L., Bertheau, P., Desreumaux, P., Janin, A., Charron, D. and Toubert, A., Binding of Escherichia coli adhesin AfaE to CD55 triggers cell-surface expression of the MHC class I-related molecule MICA. Proc. Natl. Acad. Sci. USA 2002. 99: 29772982.
  • 8
    Champsaur, M. and Lanier, L. L., Effect of NKG2D ligand expression on host immune responses. Immunol Rev. 2010. 235: 267285.
  • 9
    Eagle, R. A., Traherne, J. A., Hair, J. R., Jafferji, I. and Trowsdale, J., ULBP6/RAET1L is an additional human NKG2D ligand. Eur. J. Immunol. 2009. 39: 32073216.
  • 10
    Samarakoon, A., Chu, H. and Malarkannan, S., Murine NKG2D ligands: “double, double toil and trouble”. Mol. Immunol. 2009. 46: 10111019.
  • 11
    Bauer, S., Groh, V., Wu, J., Steinle, A., Phillips, J. H., Lanier, L. L. and Spies, T., Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999. 285: 727729.
  • 12
    Groh, V., Bahram, S., Bauer, S., Herman, A., Beauchamp, M. and Spies, T., Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl. Acad. Sci. USA 1996. 93: 1244512450.
  • 13
    Perera, L., Shao, L., Patel, A., Evans, K., Meresse, B., Blumberg, R., Geraghty, D. et al., Expression of nonclassical class I molecules by intestinal epithelial cells. Inflamm. Bowel. Dis. 2007. 13: 298307.
  • 14
    Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri, N. and Raulet, D. H., Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat. Immunol. 2000. 1: 119126.
  • 15
    Jamieson, A. M., Diefenbach, A., McMahon, C. W., Xiong, N., Carlyle, J. R. and Raulet, D. H., The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 2002. 17: 1929.
  • 16
    Girardi, M., Oppenheim, D. E., Steele, C. R., Lewis, J. M., Glusac, E., Filler, R., Hobby, P. et al., Regulation of cutaneous malignancy by gammadelta T cells. Science 2001. 294: 605609.
  • 17
    Andresen, L., Hansen, K. A., Jensen, H., Pedersen, S. F., Stougaard, P., Hansen, H. R., Jurlander, J. and Skov, S., Propionic acid secreted from propionibacteria induces NKG2D ligand expression on human-activated T lymphocytes and cancer cells. J. Immunol. 2009. 183: 897906.
  • 18
    Cosman, D., Mullberg, J., Sutherland, C. L., Chin, W., Armitage, R., Fanslow, W., Kubin, M. and Chalupny, N. J., ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 2001. 14: 123133.
  • 19
    Gasser, S., Orsulic, S., Brown, E. J. and Raulet, D. H., The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 2005. 436: 11861190.
  • 20
    Jinushi, M., Takehara, T., Tatsumi, T., Kanto, T., Groh, V., Spies, T., Kimura, R. et al., Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid. Int. J. Cancer 2003. 104: 354361.
  • 21
    Skov, S., Pedersen, M. T., Andresen, L., Straten, P. T., Woetmann, A. and Odum, N., Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B. Cancer Res. 2005. 65: 1113611145.
  • 22
    Vales-Gomez, M., Chisholm, S. E., Cassady-Cain, R. L., Roda-Navarro, P. and Reyburn, H. T., Selective induction of expression of a ligand for the NKG2D receptor by proteasome inhibitors. Cancer Res. 2008. 68: 15461554.
  • 23
    Nice, T. J., Coscoy, L. and Raulet, D. H., Posttranslational regulation of the NKG2D ligand Mult1 in response to cell stress. J. Exp. Med. 2009. 206: 287298.
  • 24
    Salih, H. R., Rammensee, H. G. and Steinle, A., Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J. Immunol. 2002. 169: 40984102.
  • 25
    Ashiru, O., Boutet, P., Fernandez-Messina, L., guera-Gonzalez, S., Skepper, J. N., Vales-Gomez, M. and Reyburn, H. T., Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res. 2010. 70: 481489.
  • 26
    Grivennikov, S. I. and Karin, M., Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010. 21: 1119.
  • 27
    Bedel, R., Thiery-Vuillemin, A., Grandclement, C., Balland, J., Remy-Martin, J. P., Kantelip, B., Pallandre, J. R. et al., Novel role for STAT3 in transcriptional regulation of NK immune cell targeting receptor MICA on cancer cells. Cancer Res. 2011. 71: 16151626.
  • 28
    Castriconi, R., Cantoni, C., Della, C. M., Vitale, M., Marcenaro, E., Conte, R., Biassoni, R. et al., Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc. Natl. Acad. Sci. USA 2003. 100: 41204125.
  • 29
    Ghiringhelli, F., Menard, C., Terme, M., Flament, C., Taieb, J., Chaput, N., Puig, P. E. et al., CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J. Exp. Med. 2005. 202: 10751085.
  • 30
    Atarashi, K., Tanoue, T., Shima, T., Imaoka, A., Kuwahara, T., Momose, Y., Cheng, G. et al., Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011. 331: 337341.
  • 31
    Gaboriau-Routhiau, V., Rakotobe, S., Lecuyer, E., Mulder, I., Lan, A., Bridonneau, C., Rochet, V. et al., The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009. 31: 677689.
  • 32
    Sartor, R. B., Microbial influences in inflammatory bowel diseases. Gastroenterology 2008. 134: 577594.
  • 33
    Kjellev, S., Haase, C., Lundsgaard, D., Urso, B., Tornehave, D. and Markholst, H., Inhibition of NKG2D receptor function by antibody therapy attenuates transfer-induced colitis in SCID mice. Eur. J. Immunol. 2007. 37: 13971406.
  • 34
    Bech-Nielsen, G. V., Hansen, C. H., Hufeldt, M. R., Nielsen, D. S., Aasted, B., Vogensen, F. K., Midtvedt, T. and Hansen, A. K., Manipulation of the gut microbiota in C57BL/6 mice changes glucose tolerance without affecting weight development and gut mucosal immunity. Res. Vet. Sci. 2011.
  • 35
    Hansen, C. H., Krych, L., Nielsen, D. S., Vogensen, F. K., Hansen, L. H., Sorensen, S. J., Buschard, K. and Hansen, A. K., Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia 2012. 55: 22852294.
  • 36
    Ivanov, I. I., Frutos, R. L., Manel, N., Yoshinaga, K., Rifkin, D. B., Sartor, R. B., Finlay, B. B. and Littman, D. R., Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 2008. 4: 337349.
  • 37
    Izcue, A., Coombes, J. L. and Powrie, F., Regulatory lymphocytes and intestinal inflammation. Annu. Rev. Immunol. 2009. 27: 313338.
  • 38
    Petersen, A., Bergstrom, A., Andersen, J. B., Hansen, M., Lahtinen, S. J., Wilcks, A. and Licht, T. R., Analysis of the intestinal microbiota of oligosaccharide fed mice exhibiting reduced resistance to Salmonella infection. Benef. Microbes. 2010. 1: 271281.
  • 39
    Png, C. W., Linden, S. K., Gilshenan, K. S., Zoetendal, E. G., McSweeney, C. S., Sly, L. I., McGuckin, M. A. and Florin, T. H., Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 2010. 105: 24202428.
  • 40
    Derrien, M., Van, B. P., Hooiveld, G., Norin, E., Muller, M. and de Vos, W. M., Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front Microbiol. 2011. 2: 166.
  • 41
    Eisele, G., Wischhusen, J., Mittelbronn, M., Meyermann, R., Waldhauer, I., Steinle, A., Weller, M. and Friese, M. A., TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain 2006. 129: 24162425.
  • 42
    Serrano, A. E., Menares-Castillo, E., Garrido-Tapia, M., Ribeiro, C. H., Hernandez, C. J., Mendoza-Naranjo, A., Gatica-Andrades, M. et al., Interleukin 10 decreases MICA expression on melanoma cell surface. Immunol. Cell Biol. 2011. 89: 447457.
  • 43
    Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. and Muller, W., Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993. 75: 263274.
  • 44
    Ivanov, I. I., Atarashi, K., Manel, N., Brodie, E. L., Shima, T., Karaoz, U., Wei, D. et al., Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009. 139: 485498.
  • 45
    Zhou, R., Wei, H., Sun, R., Zhang, J. and Tian, Z., NKG2D recognition mediates toll-like receptor 3 signaling-induced breakdown of epithelial homeostasis in the small intestines of mice. Proc. Natl. Acad. Sci. USA 2007. 104: 75127515.
  • 46
    Frank, D. N., St Amand, A. L., Feldman, R. A., Boedeker, E. C., Harpaz, N. and Pace, N. R., Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 2007. 104: 1378013785.
  • 47
    Nicklas, W., Deeny, A., Diercks, P., Gobbi, A., Illgen-Wilcke, B. and Seidelin, M., FELASA guidelines for the accreditation of health monitoring programs and testing laboratories involved in health monitoring. Lab Anim 2010. 39: 4348.
  • 48
    Hufeldt, M. R., Nielsen, D. S., Vogensen, F. K., Midtvedt, T. and Hansen, A. K., Variation in the gut microbiota of laboratory mice is related to both genetic and environmental factors. Comp. Med. 2010. 60: 336347.
  • 49
    Muyzer, G., de Waal, E. C. and Uitterlinden, A. G., Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993. 59: 695700.
  • 50
    Collado, M. C., Derrien, M., Isolauri, E., de Vos, W. M. and Salminen, S., Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol. 2007. 73: 77677770.