• 1
    Kondo, M., Wagers, A. J., Manz, M. G., Prohaska, S. S., Scherer, D. C., Beilhack, G. F., Shizuru, J. A. et al., Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol. 2003. 21: 759806.
  • 2
    Shortman, K. and Liu, Y. J., Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2002. 2: 151161.
  • 3
    Liu, Y. J., Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 2001. 106: 259262.
  • 4
    Xu, Y., Zhan, Y., Lew, A. M., Naik, S. H. and Kershaw, M. H., Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. J. Immunol. 2007. 179: 75777584.
  • 5
    Shortman, K. and Naik, S. H., Steady-state and inflammatory dendritic-cell development. Nat. Rev. Immunol. 2007. 7: 1930.
  • 6
    Vremec, D., Pooley, J., Hochrein, H., Wu, L. and Shortman, K., CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J. Immunol. 2000. 164: 29782986.
  • 7
    den Haan, J. M., Lehar, S. M. and Bevan, M. J., CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 2000. 192: 16851696.
  • 8
    Hochrein, H., Shortman, K., Vremec, D., Scott, B., Hertzog, P. and O'Keeffe, M., Differential production of IL-12, IFN-alpha, and IFN-gamma by mouse dendritic cell subsets. J. Immunol. 2001. 166: 54485455.
  • 9
    Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. and Pamer, E. G., TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 2003. 19: 5970.
  • 10
    Inaba, K., Inaba, M., Romani, N., Aya, H., Deguchi, M., Ikehara, S., Muramatsu, S. et al., Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 1992. 176: 16931702.
  • 11
    Blom, B., Ho, S., Antonenko, S. and Liu, Y. J., Generation of interferon alpha-producing predendritic cell (Pre-DC)2 from human CD34(+) hematopoietic stem cells. J. Exp. Med. 2000. 192: 17851796.
  • 12
    Naik, S. H., Proietto, A. I., Wilson, N. S., Dakic, A., Schnorrer, P., Fuchsberger, M., Lahoud, M. H. et al., Cutting edge: generation of splenic CD8+ and CD8- dendritic cell equivalents in Fms-like tyrosine kinase 3 ligand bone marrow cultures. J. Immunol. 2005. 174: 65926597.
  • 13
    McKenna, H. J., Stocking, K. L., Miller, R. E., Brasel, K., De Smedt, T., Maraskovsky, E., Maliszewski, C. R. et al., Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 2000. 95: 34893497.
  • 14
    Hamilton, J. A., GM-CSF in inflammation and autoimmunity. Trends Immunol. 2002. 23: 403408.
  • 15
    Naik, S. H., Metcalf, D., van Nieuwenhuijze, A., Wicks, I., Wu, L., O'Keeffe, M. and Shortman, K., Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat. Immunol. 2006. 7: 663671.
  • 16
    Kingston, D., Schmid, M. A., Onai, N., Obata-Onai, A., Baumjohann, D. and Manz, M. G., The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis. Blood 2009. 114: 835843.
  • 17
    Cheers, C., Haigh, A. M., Kelso, A., Metcalf, D., Stanley, E. R. and Young, A. M., Production of colony-stimulating factors (CSFs) during infection: separate determinations of macrophage-, granulocyte-, granulocyte-macrophage-, and multi-CSFs. Infect. Immun. 1988. 56: 247251.
  • 18
    Bohannon, J. K., Cui, W. and Toliver-Kinsky, T., Endogenous Fms-like tyrosine kinase-3 ligand levels are not altered in mice after a severe burn and infection. BMC Immunol. 2009. 10: 47.
  • 19
    Gilliet, M., Boonstra, A., Paturel, C., Antonenko, S., Xu, X. L., Trinchieri, G., O'Garra, A. and Liu, Y. J., The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 2002. 195: 953958.
  • 20
    Esashi, E., Wang, Y. H., Perng, O., Qin, X. F., Liu, Y. J. and Watowich, S. S., The signal transducer STAT5 inhibits plasmacytoid dendritic cell development by suppressing transcription factor IRF8. Immunity 2008. 28: 509520.
  • 21
    Xu, Y., Schnorrer, P., Proietto, A., Kowalski, G., Febbraio, M. A., Acha-Orbea, H., Dickins, R. A. et al., IL-10 controls cystatin C synthesis and blood concentration in response to inflammation through regulation of IRF-8 expression. J. Immunol. 2011. 186: 36663673.
  • 22
    Naik, S. H., Sathe, P., Park, H. Y., Metcalf, D., Proietto, A. I., Dakic, A., Carotta, S. et al., Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 2007. 8: 12171226.
  • 23
    Zhan, Y., Xu, Y., Seah, S., Brady, J. L., Carrington, E. M., Cheers, C., Croker, B. A. et al., Resident and monocyte-derived dendritic cells become dominant IL-12 producers under different conditions and signaling pathways. J. Immunol. 2010. 185: 21252133.
  • 24
    Nikolic, T., de Bruijn, M. F., Lutz, M. B. and Leenen, P. J., Developmental stages of myeloid dendritic cells in mouse bone marrow. Int. Immunol. 2003. 15: 515524.
  • 25
    Laouar, Y., Welte, T., Fu, X. Y. and Flavell, R. A., STAT3 is required for Flt3L-dependent dendritic cell differentiation. Immunity 2003. 19: 903912.
  • 26
    Hattersley, G., Dorey, E., Horton, M. A. and Chambers, T. J., Human macrophage colony-stimulating factor inhibits bone resorption by osteoclasts disaggregated from rat bone. J. Cell. Physiol. 1988. 137: 199203.
  • 27
    Rieger, M. A., Hoppe, P. S., Smejkal, B. M., Eitelhuber, A. C. and Schroeder, T., Hematopoietic cytokines can instruct lineage choice. Science 2009. 325: 217218.
  • 28
    Vremec, D., Lieschke, G. J., Dunn, A. R., Robb, L., Metcalf, D. and Shortman, K., The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs. Eur. J. Immunol. 1997. 27: 4044.
  • 29
    Sathe, P., Pooley, J., Vremec, D., Mintern, J., Jin, J. O., Wu, L., Kwak, J. Y. et al., The acquisition of antigen cross-presentation function by newly formed dendritic cells. J. Immunol. 2011. 186: 51845192.
  • 30
    Zhan, Y., Carrington, E. M., van Nieuwenhuijze, A., Bedoui, S., Seah, S., Xu, Y., Wang, N. et al., GM-CSF increases cross-presentation and CD103 expression by mouse CD8 spleen dendritic cells. Eur. J. Immunol. 2011. 41: 25852595.
  • 31
    Kamath, A. T., Pooley, J., O'Keeffe, M. A., Vremec, D., Zhan, Y., Lew, A. M., D'Amico, A. et al., The development, maturation, and turnover rate of mouse spleen dendritic cell populations. J. Immunol. 2000. 165: 67626770.
  • 32
    Fuertes Marraco, S. A., Scott, C. L., Bouillet, P., Ives, A., Masina, S., Vremec, D., Jansen, E. S. et al., Type I interferon drives dendritic cell apoptosis via multiple BH3-only proteins following activation by PolyIC in vivo. PLoS One 2011. 6: e20189.
  • 33
    Metcalf, D., Shortman, K., Vremec, D., Mifsud, S. and Di Rago, L., Effects of excess GM-CSF levels on hematopoiesis and leukemia development in GM-CSF/max 41 double transgenic mice. Leukemia 1996. 10: 713719.
  • 34
    Maraskovsky, E., Brasel, K., Teepe, M., Roux, E. R., Lyman, S. D., Shortman, K. and McKenna, H. J., Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med. 1996. 184: 19531962.
  • 35
    Hanada, K., Tsunoda, R. and Hamada, H., GM-CSF-induced in vivo expansion of splenic dendritic cells and their strong costimulation activity. J. Leukoc. Biol. 1996. 60: 181190.
  • 36
    Bronte, V., Chappell, D. B., Apolloni, E., Cabrelle, A., Wang, M., Hwu, P. and Restifo, N. P., Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J. Immunol. 1999. 162: 57285737.
  • 37
    Daro, E., Pulendran, B., Brasel, K., Teepe, M., Pettit, D., Lynch, D. H., Vremec, D. et al., Polyethylene glycol-modified GM-CSF expands CD11b(high)CD11c(high) but notCD11b(low)CD11c(high) murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. J. Immunol. 2000. 165: 4958.
  • 38
    Pulendran, B., Lingappa, J., Kennedy, M. K., Smith, J., Teepe, M., Rudensky, A., Maliszewski, C. R. et al., Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J. Immunol. 1997. 159: 22222231.
  • 39
    Gillessen, S., Naumov, Y. N., Nieuwenhuis, E. E., Exley, M. A., Lee, F. S., Mach, N., Luster, A. D. et al., CD1d-restricted T cells regulate dendritic cell function and antitumor immunity in a granulocyte-macrophage colony-stimulating factor-dependent fashion. Proc. Natl. Acad. Sci. USA 2003. 100: 88748879.
  • 40
    Mach, N., Gillessen, S., Wilson, S. B., Sheehan, C., Mihm, M. and Dranoff, G., Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand. Cancer Res. 2000. 60: 32393246.
  • 41
    Tamura, T., Kimura, K., Yuda, M. and Yui, K., Prevention of experimental cerebral malaria by Flt3 ligand during infection with Plasmodium berghei ANKA. Infect. Immun. 2011. 79: 39473956.
  • 42
    Grau, G. E., Kindler, V., Piguet, P. F., Lambert, P. H. and Vassalli, P., Prevention of experimental cerebral malaria by anticytokine antibodies. Interleukin 3 and granulocyte macrophage colony-stimulating factor are intermediates in increased tumor necrosis factor production and macrophage accumulation. J. Exp. Med. 1988. 168: 14991504.
  • 43
    Zhan, Y., Lieschke, G. J., Grail, D., Dunn, A. R. and Cheers, C., Essential roles for granulocyte-macrophage colony-stimulating factor (GM-CSF) and G-CSF in the sustained hematopoietic response of Listeria monocytogenes-infected mice. Blood 1998. 91: 863869.
  • 44
    Scott, C. L., Robb, L., Papaevangeliou, B., Mansfield, R., Nicola, N. A. and Begley, C. G., Reassessment of interactions between hematopoietic receptors using common beta-chain and interleukin-3-specific receptor beta-chain-null cells: no evidence of functional interactions with receptors for erythropoietin, granulocyte colony-stimulating factor, or stem cell factor. Blood 2000. 96: 15881590.
  • 45
    Lang, R. A., Metcalf, D., Cuthbertson, R. A., Lyons, I., Stanley, E., Kelso, A., Kannourakis, G. et al., Transgenic mice expressing a hemopoietic growth factor gene (GM-CSF) develop accumulations of macrophages, blindness, and a fatal syndrome of tissue damage. Cell 1987. 51: 675686.
  • 46
    Xu, Y., Darcy, P. K. and Kershaw, M. H., Tumor-specific dendritic cells generated by genetic redirection of Toll-like receptor signaling against the tumor-associated antigen, erbB2. Cancer Gene Ther. 2007. 14: 773780.
  • 47
    El-Sukkari, D., Wilson, N. S., Hakansson, K., Steptoe, R. J., Grubb, A., Shortman, K. and Villadangos, J. A., The protease inhibitor cystatin C is differentially expressed among dendritic cell populations, but does not control antigen presentation. J. Immunol. 2003. 171: 50035011.