• 1
    Hayday, A. C., γδ T cells and the lymphoid stress-surveillance response. Immunity 2009. 31: 184196.
  • 2
    Bonneville, M., O'Brien, R. L. and Born, W. K., γδ T cell effector functions: a blend of innate programming and acquired plasticity. Nat. Rev. Immunol. 2010. 10: 467478.
  • 3
    Chodaczek, G., Papanna, V., Zal, M. A. and Zal, T., Body-barrier surveillance by epidermal γδ TCRs. Nat. Immunol. 2012. 13: 272282.
  • 4
    Moser, B. and Eberl, M., γδ T-APCs: a novel tool for immunotherapy? Cell. Mol. Life Sci. 2011. 68: 24432452.
  • 5
    Morita, C. T., Jin, C., Sarikonda, G. and Wang, H., Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vγ2Vδ2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol. Rev. 2007. 215: 5976.
  • 6
    Castella, B., Vitale, C., Coscia, M. and Massaia, M., Vγ9Vδ2 T cell-based immunotherapy in hematological malignancies: from bench to bedside. Cell. Mol. Life Sci. 2011. 68: 24192432.
  • 7
    Caccamo, N., Dieli, F., Meraviglia, S., Guggino, G. and Salerno, A., γδ T cell modulation in anticancer treatment. Curr. Cancer. Drug. Targets 2010. 10: 2736.
  • 8
    Brenner, M. B., McLean, J., Dialynas, D. P., Strominger, J. L., Smith, J. A., Owen, F. L., Seidman, J. G. et al., Identification of a putative second T-cell receptor. Nature 1986. 322: 145-149.
  • 9
    Modlin, R. L., Pirmez, C., Hofman, F. M., Torigian, V., Uyemura, K., Rea, T. H., Bloom, B. R. et al., Lymphocytes bearing antigen-specific γδ T-cell receptors accumulate in human infectious disease lesions. Nature 1989. 339: 544548.
  • 10
    Constant, P., Davodeau, F., Peyrat, M. A., Poquet, Y., Puzo, G., Bonneville, M. and Fournié, J. J., Stimulation of human γδ T cells by nonpeptidic mycobacterial ligands. Science 1994. 264: 267270.
  • 11
    Tanaka, Y., Sano, S., Nieves, E., de Libero, G., Rosa, D., Modlin, R. L., Brenner, M. B. et al., Nonpeptide ligands for human γδ T cells. Proc. Natl. Acad. Sci. USA 1994. 91: 81758179.
  • 12
    Tanaka, Y., Morita, C. T., Tanaka, Y., Nieves, E., Brenner, M. B. and Bloom, B. R., Natural and synthetic non-peptide antigens recognized by human γδ T cells. Nature 1995. 375: 155158.
  • 13
    Eberl, M., Hintz, M., Reichenberg, A., Kollas, A. K., Wiesner, J. and Jomaa, H., Microbial isoprenoid biosynthesis and human γδ T cell activation. FEBS Lett. 2003. 544: 410.
  • 14
    Eberl, M., Roberts, G. W., Meuter, S., Williams, J. D., Topley, N. and Moser, B., A rapid crosstalk of human γδ T cells and monocytes drives the acute inflammation in bacterial infections. PLoS Pathog. 2009. 5: e1000308.
  • 15
    Davey, M. S., Lin, C. Y., Roberts, G. W., Heuston, S., Brown, A. C., Chess, J. A., Toleman, M. A. et al., Human neutrophil clearance of bacterial pathogens triggers anti-microbial γδ T cell responses in early infection. PLoS Pathog. 2011. 7: e1002040.
  • 16
    Eberl, M. and Moser, B., Monocytes and γδ T cells: close encounters in microbial infection. Trends Immunol. 2009. 30: 562568.
  • 17
    Bukowski, J. F., Morita, C. T., Tanaka, Y., Bloom, B. R., Brenner, M. B. and Band, H., Vγ2Vδ2 TCR-dependent recognition of non-peptide antigens and Daudi cells analyzed by TCR gene transfer. J. Immunol. 1995. 154: 9981006.
  • 18
    Wang, H., Sarikonda, G., Puan, K. J., Tanaka, Y., Feng, J., Giner, J. L., Cao, R. et al., Indirect stimulation of human Vγ2Vδ2 T cells through alterations in isoprenoid metabolism. J. Immunol. 2011. 187: 50995113.
  • 19
    Correia, D. V., d'Orey, F., Cardoso, B. A., Lança, T., Grosso A. R., deBarros A., Martins L. R. et al., Highly active microbial phosphoantigen induces rapid yet sustained MEK/Erk- and PI-3K/Akt-mediated signal transduction in anti-tumor human γδ T-cells. PLoS One. 2009. 4: e5657.
  • 20
    Allison, T. J., Winter, C. C., Fournié, J. J., Bonneville, M. and Garboczi, D. N., Structure of a human γδ T-cell antigen receptor. Nature 2001. 411: 820824.
  • 21
    Reichenberg, A., Hintz, M., Kletschek, Y., Kuhl, T., Haug, C., Engel, R., Moll, J. et al., Replacing the pyrophosphate group of HMB-PP by a diphosphonate function abrogates its potential to activate human γδ T cells but does not lead to competitive antagonism. Bioorg. Med. Chem. Lett. 2003. 13: 12571260.
  • 22
    Zgani, I., Menut, C., Seman, M., Gallois, V., Laffont, V., Liautard, J., Liautard, J. P. et al., Synthesis of prenyl pyrophosphonates as new potent phosphoantigens inducing selective activation of human Vγ9Vδ2 T lymphocytes. J. Med. Chem. 2004. 47: 46004612.
  • 23
    Boëdec, A., Sicard, H., Dessolin, J., Herbette, G., Ingoure, S., Raymond, C., Belmant, C. et al., Synthesis and biological activity of phosphonate analogues and geometric isomers of the highly potent phosphoantigen (E)-1-hydroxy-2-methylbut-2-enyl 4-diphosphate. J. Med. Chem. 2008. 51: 17471754.
  • 24
    Breccia, P., Angeli, F., Cerbara, I., Topai, A., Auricchio, G., Martino, A., Colizzi, V. et al., Thiopyrophosphoantigens: solid-phase synthesis and in vitro characterization of a new class of Vγ9 Vδ2 T cells activators. J. Med. Chem. 2009. 52: 37163722.
  • 25
    Kunzmann, V., Bauer, E. and Wilhelm, M., γ/δ T-cell stimulation by pamidronate. N. Engl. J. Med. 1999. 340: 737738.
  • 26
    Das, H., Wang, L., Kamath, A. and Bukowski, J. F., Vγ2Vδ2 T-cell receptor-mediated recognition of aminobisphosphonates. Blood 2001. 98: 16161618.
  • 27
    Kato, Y., Tanaka, Y., Tanaka, H., Yamashita, S. and Minato, N., Requirement of species-specific interactions for the activation of human γδ T cells by pamidronate. J. Immunol. 2003. 170: 36083613.
  • 28
    Roelofs, A. J., Jauhiainen, M., Mönkkönen, H., Rogers, M. J., Mönkkönen, J. and Thompson, K., Peripheral blood monocytes are responsible for γδ T cell activation induced by zoledronic acid through accumulation of IPP/DMAPP. Br. J. Haematol. 2009. 144: 245250.
  • 29
    Keller, R. K. and Fliesler, S. J., Mechanism of aminobisphosphonate action: characterization of alendronate inhibition of the isoprenoid pathway. Biochem. Biophys. Res. Commun. 1999. 266: 560563.
  • 30
    Liao, J. K. and Laufs, U., Pleiotropic effects of statins. Annu. Rev. Pharmacol. Toxicol. 2005. 45: 89118.
  • 31
    Gober, H. J., Kistowska, M., Angman, L., Jenö, P., Mori, L. and De Libero, G., Human T cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells. J. Exp. Med. 2003. 197: 163168.
  • 32
    Mönkkönen, H., Auriola, S., Lehenkari, P., Kellinsalmi, M., Hassinen, I. E., Vepsäläinen, J. and Mönkkönen, J., A new endogenous ATP analog (ApppI) inhibits the mitochondrial adenine nucleotide translocase (ANT) and is responsible for the apoptosis induced by nitrogen-containing bisphosphonates. Br. J. Pharmacol. 2006. 147: 437445.
  • 33
    Mönkkönen, H., Ottewell, P.D., Kuokkanen, J., Mönkkönen, J., Auriola, S. and Holen, I., Zoledronic acid-induced IPP/ApppI production in vivo. Life Sci. 2007. 81: 10661070.
  • 34
    Poquet, Y., Constant, P., Halary, F., Peyrat, M. A., Gilleron, M., Davodeau, F., Bonneville, M. et al., A novel nucleotide-containing antigen for human blood γδ T lymphocytes. Eur. J. Immunol. 1996. 26: 23442349.
  • 35
    Zhang, Y., Song, Y., Yin, F., Broderick, E., Siegel, K., Goddard, A., Nieves, E. et al., Structural studies of Vγ2Vδ2 T cell phosphoantigens. Chem. Biol. 2006. 13: 985992.
  • 36
    Champagne, E., γδ T cell receptor ligands and modes of antigen recognition. Arch. Immunol. Ther. Exp. (Warsz) 2011. 59: 117137.
  • 37
    Rojas, R. E., Torres, M., Fournié, J. J., Harding, C. V. and Boom, W. H., Phosphoantigen presentation by macrophages to Mycobacterium tuberculosis-reactive Vγ9Vδ2+T cells: modulation by chloroquine. Infect. Immun. 2002. 70: 40194027.
  • 38
    Wei, H., Huang, D., Lai, X., Chen, M., Zhong, W., Wang, R. and Chen, Z. W., Definition of APC presentation of phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate to Vγ2Vδ2 TCR. J. Immunol. 2008. 181: 47984806.
  • 39
    Thompson, K., Rogers, M. J., Coxon, F. P. and Crockett, J. C., Cytosolic entry of bisphosphonate drugs requires acidification of vesicles after fluid-phase endocytosis. Mol. Pharmacol. 2006. 69: 16241632.
  • 40
    Kistowska, M., Rossy, E., Sansano, S., Gober, H. J., Landmann, R., Mori, L. and De Libero, G., Dysregulation of the host mevalonate pathway during early bacterial infection activates human TCRγδ cells. Eur. J. Immunol. 2008. 38: 22002209.
  • 41
    Castella, B., Riganti, C., Fiore, F., Pantaleoni, F., Canepari, M. E., Peola, S., Foglietta, M. et al., Immune modulation by zoledronic acid in human myeloma: an advantageous cross-talk between Vγ9Vδ2 T cells, αβ CD8+T cells, regulatory T cells, and dendritic cells. J. Immunol. 2011. 187: 15781590.
  • 42
    Benzaïd, I., Mönkkönen, H., Stresing, V., Bonnelye, E., Green, J., Mönkkönen, J., Touraine, J. L. et al., High phosphoantigen levels in bisphosphonate-treated human breast tumors promote Vγ9Vδ2 T-cell chemotaxis and cytotoxicity in vivo. Cancer Res. 2011. 71: 45624572.
  • 43
    Espenshade, P. J. and Hughes, A. L., Regulation of sterol synthesis in eukaryotes. Annu. Rev. Genet. 2007. 41: 401427.
  • 44
    Clendening, J. W., Pandyra, A., Boutrosa, P. C., El Ghamrasni, S., Khosravi, F., Trentin, G. A., Martirosyan, A. et al., Dysregulation of the mevalonate pathway promotes transformation. Proc. Natl. Acad. Sci. USA 2010. 107: 1505115056.
  • 45
    Freed-Pastor, W. A., Mizuno, H., Zhao, X., Langerød, A., Moon, S. H., Rodriguez-Barrueco, R., Barsotti, A. et al., Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 2012. 148: 244258.
  • 46
    György, B., Szabó, T. G., Pásztói, M., Pál, Z., Misják, P., Aradi, B., László, V. et al., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 2011. 68: 26672688.
  • 47
    Théry, C., Ostrowski, M. and Segura, E., Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 2009. 9: 581593.
  • 48
    Clayton, A., Al-Taei, S., Webber, J., Mason, M. D. and Tabi, Z., Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J. Immunol. 2011. 187: 676683.
  • 49
    Bhatnagar, S., Shinagawa, K., Castellino, F. J. and Schorey, J. S., Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood 2007. 110: 32343244.
  • 50
    Green, A. E., Lissina, A., Hutchinson, S. L., Hewitt, R. E., Temple, B., James, D., Boulter, J. M. et al., Recognition of nonpeptide antigens by human Vγ9Vδ2 T cells requires contact with cells of human origin. Clin. Exp. Immunol. 2004. 136: 472482.
  • 51
    Sarikonda, G., Wang, H., Puan, K. J., Liu, X. H., Lee, H. K., Song, Y., Distefano, M. D. et al., Photoaffinity antigens for human γδ T cells. J. Immunol. 2008. 181: 77387750.
  • 52
    Mookerjee-Basu, J., Vantourout, P., Martinez, L. O., Perret, B., Collet, X., Périgaud, C., Peyrottes, S. et al., F1-adenosine triphosphatase displays properties characteristic of an antigen presentation molecule for Vγ9Vδ2 T cells. J. Immunol. 2010. 184: 69206928.
  • 53
    Compte, E., Pontarotti, P., Collette, Y., Lopez, M. and Olive, D., Frontline: characterization of BT3 molecules belonging to the B7 family expressed on immune cells. Eur. J. Immunol. 2004. 34: 20892099.
  • 54
    Abeler-Dörner, L., Swamy, M., Williams, G., Hayday, A. C. and Bas, A., Butyrophilins: an emerging family of immune regulators. Trends Immunol. 2012. 33: 3441.
  • 55
    Harly, C., Guillaume, Y., Mönkkönen, H., Mönkkönen, J., Olive, D., Bonneville, M. and Scotet, E. et al., Key role played by a butyrophilin family gene product in human Vγ9/Vδ2 T-cell activation and responsiveness to phosphoantigens. Abstract C2, 4th γδ T-Cell Conference, Kiel, Germany, 1921 May 2010.
  • 56
    Kato, Y., Tanaka, Y., Hayashi, M., Okawa, K. and Minato, N., Involvement of CD166 in the activation of human γδ T cells by tumor cells sensitized with nonpeptide antigens. J. Immunol. 2006. 177: 877884.
  • 57
    Bessoles, S., Ni, M., Garcia-Jimenez, S., Sanchez, F. and Lafont, V., Role of NKG2D and its ligands in the anti-infectious activity of Vγ9Vδ2 T cells against intracellular bacteria. Eur. J. Immunol. 2011. 41: 16191628.
  • 58
    Ribot, J. C., DeBarros, A. and Silva-Santos, B., Searching for “signal 2”: costimulation requirements of γδ T cells. Cell. Mol. Life Sci. 2011. 68: 23452355.
  • 59
    Nedellec, S., Bonneville, M. and Scotet, E., Human Vγ9Vδ2 T cells: from signals to functions. Semin. Immunol. 2010. 22: 199206.