• 1
    Freitas, A. A. and Rocha, B., Population biology of lymphocytes: the flight for survival. Annu. Rev. Immunol. 2000. 18: 83111.
  • 2
    Jameson, S. C., T-cell homeostasis: keeping useful Tcells alive and live T cells useful. Semin. Immunol. 2005. 17: 231237.
  • 3
    Tokoyoda, K., Egawa, T., Sugiyama, T., Choi, B. I. and Nagasawa, T., Cellular niches controlling Blymphocyte behavior within bone marrow during development. Immunity 2004. 20: 707718.
  • 4
    Tokoyoda, K., Zehentmeier, S., Chang, H. D. and Radbruch, A., Organization and maintenance of immunological memory by stroma niches. Eur. J. Immunol. 2009. 39: 20952099.
  • 5
    Tokoyoda, K., Zehentmeier, S., Hegazy, A. N., Albrecht, I., Grun, J. R., Lohning, M. and Radbruch, A., Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity 2009. 30: 721730.
  • 6
    Tokoyoda, K., Hauser, A. E., Nakayama, T. and Radbruch, A., Organization of immunological memory by bone marrow stroma. Nat. Rev. Immunol. 2010. 10: 193200.
  • 7
    Mazo, I. B., Honczarenko, M., Leung, H., Cavanagh, L. L., Bonasio, R., Weninger, W., Engelke, K., et al., Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity 2005. 22: 259270.
  • 8
    Schluns, K. S. and Lefrancois, L., Cytokine control of memory T-cell development and survival. Nat. Rev. Immunol. 2003. 3: 269279.
  • 9
    Becker, T. C., Wherry, E. J., Boone, D., Murali-Krishna, K., Antia, R., Ma, A. and Ahmed, R., Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med. 2002. 195: 15411548.
  • 10
    Burkett, P. R., Koka, R., Chien, M., Chai, S., Boone, D. L. and Ma, A., Coordinate expression and trans presentation of interleukin (IL)-15Ralpha and IL-15 supports natural killer cell and memory CD8+ T-cell homeostasis. J. Exp. Med. 2004. 200: 825834.
  • 11
    Schluns, K. S., Kieper, W. C., Jameson, S. C. and Lefrancois, L., Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat. Immunol. 2000. 1: 426432.
  • 12
    Kieper, W. C., Tan, J. T., Bondi-Boyd, B., Gapin, L., Sprent, J., Ceredig, R. and Surh, C. D., Overexpression of interleukin (IL)-7 leads to IL-15-independent generation of memory phenotype CD8+ T cells. J. Exp. Med. 2002. 195: 15331539.
  • 13
    Tan, J. T., Ernst, B., Kieper, W. C., LeRoy, E., Sprent, J. and Surh, C. D., Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 2002. 195: 15231532.
  • 14
    Hand, T. W., Morre, M. and Kaech, S. M., Expression of IL-7 receptor alpha is necessary but not sufficient for the formation of memory CD8 T cells during viral infection. Proc. Natl. Acad. Sci. U S A 2007. 104: 1173011735.
  • 15
    Schluns, K. S., Klonowski, K. D. and Lefrancois, L., Transregulation of memory CD8 T-cell proliferation by IL-15Ralpha+ bone marrow-derived cells. Blood 2004. 103: 988994.
  • 16
    Schluns, K. S., Williams, K., Ma, A., Zheng, X. X. and Lefrancois, L., Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J. Immunol. 2002. 168: 48274831.
  • 17
    Mortier, E., Advincula, R., Kim, L., Chmura, S., Barrera, J., Reizis, B., Malynn, B. A., et al., Macrophage- and dendritic-cell-derived interleukin-15 receptor alpha supports homeostasis of distinct CD8+ T-cell subsets. Immunity 2009. 31: 811822.
  • 18
    Di Rosa, F. and Santoni, A., Memory T-cell competition for bone marrow seeding. Immunology 2003. 108: 296304.
  • 19
    Slifka, M. K., Whitmire, J. K. and Ahmed, R., Bone marrow contains virus-specific cytotoxic T lymphocytes. Blood 1997. 90: 21032108.
  • 20
    Becker, T. C., Coley, S. M., Wherry, E. J. and Ahmed, R., Bone marrow is a preferred site for homeostatic proliferation of memory CD8 T cells. J. Immunol. 2005. 174: 12691273.
  • 21
    Parretta, E., Cassese, G., Barba, P., Santoni, A., Guardiola, J. and Di Rosa, F., CD8 cell division maintaining cytotoxic memory occurs predominantly in the bone marrow. J. Immunol. 2005. 174: 76547664.
  • 22
    Obhrai, J. S., Oberbarnscheidt, M. H., Hand, T. W., Diggs, L., Chalasani, G. and Lakkis, F. G., Effector T-cell differentiation and memory T-cell maintenance outside secondary lymphoid organs. J. Immunol. 2006. 176: 40514058.
  • 23
    Di Rosa, F. and Pabst, R., The bone marrow: a nest for migratory memory T cells. Trends Immunol. 2005. 26: 360366.
  • 24
    Sabbagh, L., Snell, L. M. and Watts, T. H., TNF family ligands define niches for T-cell memory. Trends Immunol. 2007. 28: 333339.
  • 25
    Benson, M. J., Dillon, S. R., Castigli, E., Geha, R. S., Xu, S., Lam, K. P. and Noelle, R. J., Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J. Immunol. 2008. 180: 36553659.
  • 26
    Kim, M. Y., Gaspal, F. M., Wiggett, H. E., McConnell, F. M., Gulbranson-Judge, A., Raykundalia, C., Walker, L. S., et al., CD4(+)CD3(-) accessory cells costimulate primed CD4 T cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity 2003. 18: 643654.
  • 27
    Gaspal, F. M., Kim, M. Y., McConnell, F. M., Raykundalia, C., Bekiaris, V. and Lane, P. J., Mice deficient in OX40 and CD30 signals lack memory antibody responses because of deficient CD4 T-cell memory. J. Immunol. 2005. 174: 38913896.
  • 28
    Bertram, E. M., Lau, P. and Watts, T. H., Temporal segregation of 4–1BB versus CD28-mediated costimulation: 4–1BB ligand influences T-cell numbers late in the primary response and regulates the size of the T-cell memory response following influenza infection. J. Immunol. 2002. 168: 37773785.
  • 29
    Pulle, G., Vidric, M. and Watts, T. H., IL-15-dependent induction of 4–1BB promotes antigen-independent CD8 memory T-cell survival. J. Immunol. 2006. 176: 27392748.
  • 30
    Sabbagh, L., Srokowski, C. C., Pulle, G., Snell, L. M., Sedgmen, B. J., Liu, Y., Tsitsikov, E. N., et al., A critical role for TNF receptor-associated factor 1 and Bim down-regulation in CD8 memory T-cell survival. Proc. Natl. Acad. Sci. U S A 2006. 103: 1870318708.
  • 31
    Sabbagh, L., Pulle, G., Liu, Y., Tsitsikov, E. N. and Watts, T. H., ERK-dependent Bim modulation downstream of the 4–1BB-TRAF1 signaling axis is a critical mediator of CD8 T-cell survival in vivo. J. Immunol. 2008. 180: 80938101.
  • 32
    Snell, L. M., Lin, G. H. and Watts, T. H., IL-15-dependent upregulation of GITR on CD8 memory phenotype T cells in the bone marrow relative to spleen and lymph node suggests the bone marrow as a site of superior bioavailability of IL-15. J. Immunol. 2012. 188: 59155923.
  • 33
    McHugh, R. S., Whitters, M. J., Piccirillo, C. A., Young, D. A., Shevach, E. M., Collins, M. and Byrne, M. C., CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 2002. 16: 311323.
  • 34
    Choi, B. K., Bae, J. S., Choi, E. M., Kang, W. J., Sakaguchi, S., Vinay, D. S. and Kwon, B. S., 4–1BB-dependent inhibition of immunosuppression by activated CD4+CD25+ T cells. J. Leukoc. Biol. 2004. 75: 785791.
  • 35
    Wang, C., Lin, G. H., McPherson, A. J. and Watts, T. H., Immune regulation by 4–1BB and 4–1BBL: complexities and challenges. Immunol. Rev. 2009. 229: 192215.
  • 36
    Salih, H. R., Schmetzer, H. M., Burke, C., Starling, G. C., Dunn, R., Pelka-Fleischer, R., Nuessler, V., et al., Soluble CD137 (4–1BB) ligand is released following leukocyte activation and is found in sera of patients with hematological malignancies. J. Immunol. 2001. 167: 40594066.
  • 37
    Shimizu, Y., Newman, W., Tanaka, Y. and Shaw, S., Lymphocyte interactions with endothelial cells. Immunol. Today 1992. 13: 106112.
  • 38
    Miyake, K., Medina, K., Ishihara, K., Kimoto, M., Auerbach, R. and Kincade, P. W., A VCAM-like adhesion molecule on murine bone marrow stromal cells mediates binding of lymphocyte precursors in culture. J. Cell Biol. 1991. 114: 557565.
  • 39
    Crotty, S. and Ahmed, R., Immunological memory in humans. Semin. Immunol. 2004. 16: 197203.
  • 40
    Lin, G. H., Sedgmen, B. J., Moraes, T. J., Snell, L. M., Topham, D. J. and Watts, T. H., Endogenous 4–1BB ligand plays a critical role in protection from influenza-induced disease. J. Immunol. 2009. 182: 934947.
  • 41
    Shimizu, Y., Van Seventer, G. A., Horgan, K. J. and Shaw, S., Regulated expression and binding of three VLA (beta 1) integrin receptors on T cells. Nature 1990. 345: 250253.
  • 42
    Kim, Y. J., Brutkiewicz, R. R. and Broxmeyer, H. E., Role of 4–1BB (CD137) in the functional activation of cord blood CD28(-)CD8(+) T cells. Blood 2002. 100: 32533260.
  • 43
    Herndler-Brandstetter, D., Landgraf, K., Jenewein, B., Tzankov, A., Brunauer, R., Brunner, S., Parson, W., et al., Human bone marrow hosts polyfunctional memory CD4+ and CD8+ T cells with close contact to IL-15-producing cells. J. Immunol. 2011. 186: 69656971.
  • 44
    Sapoznikov, A., Pewzner-Jung, Y., Kalchenko, V., Krauthgamer, R., Shachar, I. and Jung, S., Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches. Nat. Immunol. 2008. 9: 388395.
  • 45
    Sipkins, D. A., Wei, X., Wu, J. W., Runnels, J. M., Cote, D., Means, T. K., Luster, A. D., et al., In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 2005. 435: 969973.
  • 46
    Asano, M. S. and Ahmed, R., CD8 T-cell memory in B cell-deficient mice. J. Exp. Med. 1996. 183: 21652174.
  • 47
    Kwon, B. S., Hurtado, J. C., Lee, Z. H., Kwack, K. B., Seo, S. K., Choi, B. K., Koller, B. H., et al., Immune responses in 4–1BB (CD137)-deficient mice. J. Immunol. 2002. 168: 54835490.
  • 48
    Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T. B., Oukka, M., Weiner, H. L., et al., Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006. 441: 235238.
  • 49
    Lin, G. H., Liu, Y., Ambagala, T., Kwon, B. S., Ohashi, P. S. and Watts, T. H., Evaluating the cellular targets of anti-4–1BB agonist antibody during immunotherapy of a pre-established tumor in mice. PLoS ONE 2010. 5: e11003.
  • 50
    Cottey, R., Rowe, C. A. and Bender, B. S., Measurement of tissue culture influenza virus infectious dose. In Coligan, J. E., Kruisbeek, A. M. Margulies, D. H., Shevach, E.M. and Strober, W. (Eds.), Current protocols in immunology, John Wiley and Sons, 2001. 4: 19.11.7–19.11.8.
  • 51
    Kawamoto, T. and Shimizu, M., A method for preparing 2- to 50-micron-thick fresh-frozen sections of large samples and undecalcified hard tissues. Histochem. Cell Biol. 2000. 113: 331339.