• 1
    World Health Organization, WHO position paper on influenza vaccines 2005. Wkly Epidemiol Record; 33: 279287.
  • 2
    Dawood, F. S., Jain, S., Finelli, L., Shaw, M. W., Lindstrom, S., Garten, R. J., Gubareva, L. V. et al., Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N. Engl. J. Med. 2009. 360: 26052615.
  • 3
    Epstein, S. L., Prior H1N1 influenza infection and susceptibility of Cleveland Family Study participants during the H2N2 pandemic of 1957: an experiment of nature. J. Infect. Dis. 2006. 193: 4953.
  • 4
    Slepushkin, A. N., The effect of a previous attack of A1 influenza on susceptibility to A2 virus during the 1957 outbreak. Bull. World Health Organ 1959. 20: 297301.
  • 5
    Christensen, J. P., Doherty, P. C., Branum, K. C. and Riberdy, J. M., Profound protection against respiratory challenge with a lethal H7N7 influenza A virus by increasing the magnitude of CD8(+) T-cell memory. J. Virol. 2000. 74: 1169011696.
  • 6
    Seo, S. H. and Webster, R. G., Cross-reactive, cell-mediated immunity and protection of chickens from lethal H5N1 influenza virus infection in Hong Kong poultry markets. J. Virol. 2001. 75: 25162525.
  • 7
    O'Neill, E., Krauss, S. L., Riberdy, J. M., Webster, R. G. and Woodland, D. L., Heterologous protection against lethal A/Hong Kong/156/97 (H5N1) influenza virus infection in C57BL/6 mice. J. Gen. Virol. 2000. 81: 26892696.
  • 8
    McMichael, A. J., Gotch, F. M., Noble, G. R. and Beare, P. A ., Cytotoxic T-cell immunity to influenza. N. Engl. J. Med. 1983. 309: 1317.
  • 9
    Wilkinson, T. M., Li, C. K., Chui, C. S., Huang, A. K., Perkins, M., Liebner, J. C., Lambkin-Williams, R. et al., Preexisting influenza-specific CD4(+) T cells correlate with disease protection against influenza challenge in humans. Nat. Med. 2012. 18: 274280.
  • 10
    Lillie, P. J., Berthoud, T. K., Powell, T. J., Lambe, T., Mullarkey, C., Spencer, A. J., Hamill, M. et al., Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP+M1, in humans. Clin. Infect. Dis. 2012. 55: 1925.
  • 11
    Couch, R. B., Atmar, R. L., Franco, L. M., Quarles, J. M., Nino, D., Wells, J. M., Arden, N. et al., Prior infections with seasonal influenza A/H1N1 virus reduced the illness severity and epidemic intensity of pandemic H1N1 influenza in healthy adults. Clin. Infect. Dis. 2012, 54: 311317.
  • 12
    Ge, X., Tan, V., Bollyky, P. L., Standifer, N. E., James, E. A. and Kwok, W. W., Assessment of seasonal influenza A specific CD4 T cell responses to 2009 pandemic H1N1 swine-origin influenza A virus. J. Virol. 2010, 84: 33123319.
  • 13
    Tu, W., Mao, H., Zheng, J., Liu, Y., Chiu, S. S., Qin, G., Chan, P. L. et al., Cytotoxic T lymphocytes established by seasonal human influenza cross-react against 2009 pandemic H1N1 influenza virus. J. Virol. 2010. 84: 65276535.
  • 14
    Richards, K. A., Topham, D., Chaves, F. A. and Sant, A. J., Cutting edge: CD4 T cells generated from encounter with seasonal influenza viruses and vaccines have broad protein specificity and can directly recognize naturally generated epitopes derived from the live pandemic H1N1 virus. J. Immunol. 2010. 185: 49985002.
  • 15
    Greenbaum, J. A., Kotturi, M. F., Kim, Y., Oseroff, C., Vaughan, K., Salimi, N., Vita, R. et al., Pre-existing immunity against swine-origin H1N1 influenza viruses in the general human population. Proc. Natl. Acad. Sci. USA 2009, 106: 2036520370.
  • 16
    Pantaleo, G. and Harari, A., Functional signatures in antiviral T-cell immunity for monitoring virus-associated diseases. Nat. Rev. Immunol. 2006. 6: 417423.
  • 17
    Harari, A., Vallelian, F., Meylan, P. R. and Pantaleo, G., Functional heterogeneity of memory CD4 T cell responses in different conditions of antigen exposure and persistence. J. Immunol. 2005. 174: 10371045.
  • 18
    Casey, R., Blumenkrantz, D., Millington, K., Montamat-Sicotte, D., Kon, O. M., Wickremasinghe, M., Bremang, S. et al., Enumeration of functional T-cell subsets by fluorescence-immunospot defines signatures of pathogen burden in tuberculosis. PLoS One 2010. 5: e15619.
  • 19
    Halwani, R., Doroudchi, M., Yassine-Diab, B., Janbazian, L., Shi, Y., Said, E. A., Haddad, E. K. et al., Generation and maintenance of human memory cells during viral infection. Springer Semin. Immunopathol. 2006. 28: 197208.
  • 20
    Health Protection Agency, Surveillance of influenza and other respiratory viruses in the United Kingdom: October 2008 to April 2009, 2009.
  • 21
    Lee, L. Y.-H., Ha, D. L. A., Simmons, C., de Jong, M. D., Chau, N. V. V., Schumacher, R., Peng, Y. C. et al., Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals. J. Clin. Investigation 2008. 118: 34783490.
  • 22
    Sallusto, F., Geginat, J. and Lanzavecchia, A., Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 2004. 22: 745763.
  • 23
    Betts, M. R., Brenchley, J. M., Price, D. A., De Rosa, S. C., Douek, D. C., Roederer, M. and Koup, R. A., Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J. Immunol. Methods 2003. 281: 6578.
  • 24
    Kohlmeier, J. E., Cookenham, T., Miller, S. C., Roberts, A. D., Christensen, J. P., Thomsen, A. R. and Woodland, D. L., CXCR3 directs antigen-specific effector CD4+ T cell migration to the lung during parainfluenza virus infection. J. Immunol. 2009. 183: 43784384.
  • 25
    Hancock, K., Veguilla, V., Lu, X., Zhong, W., Butler, E. N., Sun, H., Liu, F. et al., Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. N. Engl. J. Med. 2009. 361: 19451952.
  • 26
    Morris, A. G., Lin, Y. L. and Askonas, B. A., Immune interferon release when a cloned cytotoxic T-cell line meets its correct influenza-infected target cell. Nature 1982. 295: 150152.
  • 27
    Seo, S. H., Peiris, M. and Webster, R. G., Protective cross-reactive cellular immunity to lethal a/goose/Guangdong/1/96-like H5N1 influenza virus is correlated with the proportion of pulmonary CD8+ T cells expressing gamma interferon. J. Virol. 2002. 76: 48864890.
  • 28
    Lalvani, A., Brookes, R., Hambleton, S., Britton, W. J., Hill, A. V. and McMichael, A. J., Rapid effector function in CD8+ memory T cells. J. Exp. Med. 1997. 186: 859865.
  • 29
    Bot, A., Bot, S. and Bona, C. A., Protective role of gamma interferon during the recall response to influenza virus. J. Virol. 1998. 72: 66376645.
  • 30
    Karupiah, G., Chen, J. H., Mahalingam, S., Nathan, C. F. and MacMicking, J. D., Rapid interferon gamma-dependent clearance of influenza A virus and protection from consolidating pneumonitis in nitric oxide synthase 2-deficient mice. J. Exp. Med. 1998. 188: 15411546.
  • 31
    Yap, K. L., Ada, G. L. and McKenzie, I. F., Transfer of specific cytotoxic T lymphocytes protects mice inoculated with influenza virus. Nature 1978. 273: 238239.
  • 32
    Lucas, M., Day, C. L., Wyer, J. R., Cunliffe, S. L., Loughry, A., McMichael, A. J. and Klenerman, P., Ex vivo phenotype and frequency of influenza virus-specific CD4 memory T cells. J. Virol. 2004. 78: 72847287.
  • 33
    Roberts, A. D. and Woodland, D. L., Cutting edge: effector memory CD8+ T cells play a prominent role in recall responses to secondary viral infection in the lung. J. Immunol. 2004. 172: 65336537.
  • 34
    Hansen, S. G., Vieville, C., Whizin, N., Coyne-Johnson, L., Siess, D. C., Drummond, D. D., Legasse, A. W. et al., Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat. Med. 2009. 15: 293299.
  • 35
    Puissant-Lubrano, B., Bossi, P., Gay, F., Crance, J. M., Bonduelle, O., Garin, D., Bricaire, F. et al., Control of vaccinia virus skin lesions by long-term-maintained IFN-gamma+TNF-alpha +effector/memory CD4+ lymphocytes in humans. J. Clin. Invest. 2010. 120: 16361644.
  • 36
    Makedonas, G., Hutnick, N., Haney, D., Amick, A. C., Gardner, J., Cosma, G., Hersperger, A. R. et al., Perforin and IL-2 upregulation define qualitative differences among highly functional virus-specific human CD8+ T Cells. PLoS Pathog. 2010. 6: e1000798.
  • 37
    Hoji, A. and Rinaldo, C. R., Jr., Human CD8+ T cells specific for influenza A virus M1 display broad expression of maturation-associated phenotypic markers and chemokine receptors. Immunology 2005. 115: 239245.
  • 38
    Hardelid, P., Andrews, N. J., Hoschler, K., Stanford, E., Baguelin, M., Waight, P. A., Zambon, M., et al., Assessment of baseline age-specific antibody prevalence and incidence of infection to novel influenza A/H1N1 2009. Health Technol. Assess. 2010, 14: 115192.
  • 39
    Terajima, M., Cruz, J., Leporati, A. M., Orphin, L., Babon, J. A. B., Co, M. D. T., Pazoles, P. et al., Influenza A virus matrix protein 1-specific human CD8+ T-cell response induced in trivalent inactivated vaccine recipients. J. Virol. 2008. 82: 92839287.
  • 40
    Bodewes, R., Kreijtz, J. H. C. M., Hillaire, M., Geelhoed-Mieras, M. M., Fouchier, R. A. M., Osterhaus, A. D. M. E. and Rimmelzwaan, G. F., Vaccination with whole inactivated virus vaccine affects the induction of heterosubtypic immunity against influenza A/H5N1 and immunodominance of virus specific CD8+ T cell responses in mice. J. Gen. Virol. 2010, 91: 17431753.
  • 41
    Laurie, K. L., Carolan, L. A., Middleton, D., Lowther, S., Kelso, A. and Barr, I. G., Multiple infections with seasonal influenza A virus induce cross-protective immunity against A (H1N1) pandemic influenza virus in a ferret model. J. Infect. Dis. 2010. 202: 10111020.
  • 42
    Sallusto, F., Lenig, D., Forster, R., Lipp, M. and Lanzavecchia, A., Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999. 401: 708712.
  • 43
    Harari, A., Petitpierre, S., Vallelian, F. and Pantaleo, G., Skewed representation of functionally distinct populations of virus-specific CD4 T cells in HIV-1-infected subjects with progressive disease: changes after antiretroviral therapy. Blood 2004. 103: 966972.
  • 44
    Harari, A., Vallelian, F. and Pantaleo, G., Phenotypic heterogeneity of antigen-specific CD4 T cells under different conditions of antigen persistence and antigen load. Eur. J. Immunol. 2004. 34: 35253533.
  • 45
    Kaech, S. M., Hemby, S., Kersh, E. and Ahmed, R., Molecular and functional profiling of memory CD8 T cell differentiation. Cell 2002. 111: 837851.
  • 46
    Scheible, K., Zhang, G., Baer, J., Azadniv, M., Lambert, K., Pryhuber, G., Treanor, J. J. et al., CD8+ T cell immunity to 2009 pandemic and seasonal H1N1 influenza viruses. Vaccine 2011. 29: 21592168.
  • 47
    Masopust, D., Ha, S. J., Vezys, V. and Ahmed, R., Stimulation history dictates memory CD8 T cell phenotype: implications for prime-boost vaccination. J. Immunol. 2006. 177: 831839.
  • 48
    Wirth, T. C., Xue, H. H., Rai, D., Sabel, J. T., Bair, T., Harty, J. T. and Badovinac, V. P., Repetitive antigen stimulation induces stepwise transcriptome diversification but preserves a core signature of memory CD8(+) T cell differentiation. Immunity 2010. 33: 128140.
  • 49
    Crotty, S. and Ahmed, R., Immunological memory in humans. Semin. Immunol. 2004. 16: 197203.
  • 50
    Klenerman, P. and Hill, A., T cells and viral persistence: lessons from diverse infections. Nat. Immunol. 2005. 6: 873879.
  • 51
    Hogan, R. J., Cauley, L. S., Ely, K. H., Cookenham, T., Roberts, A. D., Brennan, J. W., Monard, S. et al., Long-term maintenance of virus-specific effector memory CD8+ T cells in the lung airways depends on proliferation. J. Immunol. 2002. 169: 49764981.