• 1
    Moreland, L. W., Baumgartner, S. W., Schiff, M. H., Tindall, E. A., Fleischmann, R. M., Weaver, A. L., Ettlinger, R. E. et al., Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N. Engl. J. Med. 1997. 337: 141147.
  • 2
    Gutcher, I. and Becher, B., APC-derived cytokines and T cell polarization in autoimmune inflammation. J. Clin. Invest. 2007. 117: 11191127.
  • 3
    Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. and Coffman, R. L., Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 1986. 136: 23482357.
  • 4
    Zhou, L., Chong, M. M. and Littman, D. R., Plasticity of CD4+ T cell lineage differentiation. Immunity 2009. 30: 646655.
  • 5
    Medzhitov, R. and Janeway, C. A., Jr., Decoding the patterns of self and nonself by the innate immune system. Science 2002. 296: 298300.
  • 6
    Medzhitov, R., Preston-Hurlburt, P. and Janeway, C. A., Jr., A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997. 388: 394397.
  • 7
    Munz, C., Lunemann, J. D., Getts, M. T. and Miller, S. D., Antiviral immune responses: triggers of or triggered by autoimmunity? Nat. Rev. Immunol. 2009. 9: 246258.
  • 8
    Matzinger, P., The danger model: a renewed sense of self. Science 2002. 296: 301305.
  • 9
    Shi, Y., Evans, J. E. and Rock, K. L., Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 2003. 425: 516521.
  • 10
    Oppenheim, J. J. and Yang, D., Alarmins: chemotactic activators of immune responses. Curr. Opin. Immunol. 2005. 17: 359365.
  • 11
    Stern, A. S., Podlaski, F. J., Hulmes, J. D., Pan, Y. C., Quinn, P. M., Wolitzky, A. G., Familletti, P. C. et al., Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells. Proc. Natl. Acad. Sci. USA 1990. 87: 68086812.
  • 12
    Oppmann, B., Lesley, R., Blom, B., Timans, J. C., Xu, Y., Hunte, B., Vega, F. et al., Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000. 13: 715725.
  • 13
    Macatonia, S. E., Hosken, N. A., Litton, M., Vieira, P., Hsieh, C. S., Culpepper, J. A., Wysocka, M. et al., Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J. Immunol. 1995. 154: 50715079.
  • 14
    Afkarian, M., Sedy, J. R., Yang, J., Jacobson, N. G., Cereb, N., Yang, S. Y., Murphy, T. L. et al., T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol. 2002. 3: 549557.
  • 15
    Gately, M. K., Renzetti, L. M., Magram, J., Stern, A. S., Adorini, L., Gubler, U. and Presky, D. H., The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu. Rev. Immunol. 1998. 16: 495521.
  • 16
    O'Garra, A., Hosken, N., Macatonia, S., Wenner, C. A. and Murphy, K., The role of macrophage- and dendritic cell-derived IL12 in Th1 phenotype development. Res. Immunol. 1995. 146: 466472.
  • 17
    Hsieh, C. S., Macatonia, S. E., Tripp, C. S., Wolf, S. F., O'Garra, A. and Murphy, K. M., Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993. 260: 547549.
  • 18
    Szabo, S. J., Dighe, A. S., Gubler, U. and Murphy, K. M., Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J. Exp. Med. 1997. 185: 817824.
  • 19
    Chang, J. T., Segal, B. M., Nakanishi, K., Okamura, H. and Shevach, E. M., The costimulatory effect of IL-18 on the induction of antigen-specific IFN-gamma production by resting T cells is IL-12 dependent and is mediated by up-regulation of the IL-12 receptor beta2 subunit. Eur. J. Immunol. 2000. 30: 11131119.
  • 20
    Chang, J. T., Segal, B. M. and Shevach, E. M., Role of costimulation in the induction of the IL-12/IL-12 receptor pathway and the development of autoimmunity. J. Immunol. 2000. 164: 100106.
  • 21
    Yoshimoto, T., Takeda, K., Tanaka, T., Ohkusu, K., Kashiwamura, S., Okamura, H., Akira, S. et al., IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-gamma production. J. Immunol. 1998. 161: 34003407.
  • 22
    Gutcher, I., Urich, E., Wolter, K., Prinz, M. and Becher, B., Interleukin 18-independent engagement of interleukin 18 receptor-alpha is required for autoimmune inflammation. Nat. Immunol. 2006. 7: 946953.
  • 23
    Leonard, J. P., Waldburger, K. E. and Goldman, S. J., Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J. Exp. Med. 1995. 181: 381386.
  • 24
    Becher, B., Durell, B. G. and Noelle, R. J., Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J. Clin. Invest. 2002. 110: 493497.
  • 25
    Cua, D. J., Sherlock, J., Chen, Y., Murphy, C. A., Joyce, B., Seymour, B., Lucian, L. et al., Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003. 421: 744748.
  • 26
    Langrish, C. L., Chen, Y., Blumenschein, W. M., Mattson, J., Basham, B., Sedgwick, J. D., McClanahan, T. et al., IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 2005. 201: 233240.
  • 27
    Ivanov, II, Zhou, L. and Littman, D. R., Transcriptional regulation of Th17 cell differentiation. Semin. Immunol. 2007. 19: 409417.
  • 28
    Parham, C., Chirica, M., Timans, J., Vaisberg, E., Travis, M., Cheung, J., Pflanz, S. et al., A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J. Immunol. 2002. 168: 56995708.
  • 29
    Zhang, G. X., Yu, S., Gran, B., Li, J., Siglienti, I., Chen, X., Calida, D., et al., Role of IL-12 receptor beta 1 in regulation of T cell response by APC in experimental autoimmune encephalomyelitis. J. Immunol. 2003. 171: 44854492.
  • 30
    Zhang, G. X., Gran, B., Yu, S., Li, J., Siglienti, I., Chen, X., Kamoun, M., et al., Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J. Immunol. 2003. 170: 21532160.
  • 31
    Gyulveszi, G., Haak, S. and Becher, B., IL-23-driven encephalo-tropism and Th17 polarization during CNS-inflammation in vivo. Eur. J. Immunol. 2009. 39: 18641869.
  • 32
    Awasthi, A., Riol-Blanco, L., Jager, A., Korn, T., Pot, C., Galileos, G., Bettelli, E. et al., Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J. Immunol. 2009. 182: 59045908.
  • 33
    Nurieva, R., Yang, X. O., Martinez, G., Zhang, Y., Panopoulos, A. D., Ma, L., Schluns, K. et al., Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 2007. 448: 480483.
  • 34
    Zhou, L., Ivanov, II, Spolski, R., Min, R., Shenderov, K., Egawa, T., Levy, D. E. et al., IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 2007. 8: 967974.
  • 35
    Huber, M., Brustle, A., Reinhard, K., Guralnik, A., Walter, G., Mahiny, A., von Low, E. et al., IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17 phenotype. Proc. Natl. Acad. Sci. USA 2008. 105: 2084620851.
  • 36
    Wei, L., Laurence, A., Elias, K. M. and O'Shea, J. J., IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J. Biol. Chem. 2007. 282: 3460534610.
  • 37
    Sonderegger, I., Kisielow, J., Meier, R., King, C. and Kopf, M., IL-21 and IL-21R are not required for development of Th17 cells and autoimmunity in vivo. Eur. J. Immunol. 2008. 38: 18331838.
  • 38
    Veldhoen, M., Hocking, R. J., Flavell, R. A. and Stockinger, B., Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat. Immunol. 2006. 7: 11511156.
  • 39
    Ghoreschi, K., Laurence, A., Yang, X. P., Hirahara, K. and O'Shea, J. J., T helper 17 cell heterogeneity and pathogenicity in autoimmune disease. Trends Immunol. 32: 395401.
  • 40
    Sawcer, S., Hellenthal, G., Pirinen, M., Spencer, C. C., Patsopoulos, N. A., Moutsianas, L., Dilthey, A. et al., Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 476: 214219.
  • 41
    Luo, J., Wu, S. J., Lacy, E. R., Orlovsky, Y., Baker, A., Teplyakov, A., Obmolova, G. et al., Structural basis for the dual recognition of IL-12 and IL-23 by ustekinumab. J. Mol. Biol. 402: 797812.
  • 42
    Leonardi, C. L., Kimball, A. B., Papp, K. A., Yeilding, N., Guzzo, C., Wang, Y., Li, S. et al., Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 2008. 371: 16651674.
  • 43
    Papp, K. A., Langley, R. G., Lebwohl, M., Krueger, G. G., Szapary, P., Yeilding, N., Guzzo, C. et al., Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 2008. 371: 16751684.
  • 44
    Griffiths, C. E., Strober, B. E., van de Kerkhof, P., Ho, V., Fidelus-Gort, R., Yeilding, N., Guzzo, C. et al., Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N Engl. J. Med. 2010. 362: 118128.
  • 45
    Segal, B. M., Constantinescu, C. S., Raychaudhuri, A., Kim, L., Fidelus-Gort, R. and Kasper, L. H., Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet. Neurol. 2008. 7: 796804.
  • 46
    Becher, B., Durell, B. G. and Noelle, R. J., IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J. Clin. Invest. 2003. 112: 11861191.
  • 47
    Chabaud, M., Garnero, P., Dayer, J. M., Guerne, P. A., Fossiez, F. and Miossec, P., Contribution of interleukin 17 to synovium matrix destruction in rheumatoid arthritis. Cytokine 2000. 12: 10921099.
  • 48
    Duerr, R. H., Taylor, K. D., Brant, S. R., Rioux, J. D., Silverberg, M. S., Daly, M. J., Steinhart, A. H. et al., A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006. 314: 14611463.
  • 49
    Fujino, S., Andoh, A., Bamba, S., Ogawa, A., Hata, K., Araki, Y., Bamba, T. et al., Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003. 52: 6570.
  • 50
    Kebir, H., Kreymborg, K., Ifergan, I., Dodelet-Devillers, A., Cayrol, R., Bernard, M., Giuliani, F. et al., Human Th17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 2007. 13: 11731175.
  • 51
    Lock, C., Hermans, G., Pedotti, R., Brendolan, A., Schadt, E., Garren, H., Langer-Gould, A. et al., Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 2002. 8: 500508.
  • 52
    Yen, D., Cheung, J., Scheerens, H., Poulet, F., McClanahan, T., McKenzie, B., Kleinschek, M. A. et al., IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 2006. 116: 13101316.
  • 53
    Ogawa, A., Andoh, A., Araki, Y., Bamba, T. and Fujiyama, Y., Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin. Immunol. 2004. 110: 5562.
  • 54
    Hueber, W., Patel, D. D., Dryja, T., Wright, A. M., Koroleva, I., Bruin, G., Antoni, C. et al., Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci. Transl. Med. 2010. 2: 52ra72.
  • 55
    Billiau, A., Heremans, H., Vandekerckhove, F., Dijkmans, R., Sobis, H., Meulepas, E. and Carton, H., Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. J. Immunol. 1988. 140: 15061510.
  • 56
    Voorthuis, J. A., Uitdehaag, B. M., De Groot, C. J., Goede, P. H., van der Meide, P. H. and Dijkstra, C. D., Suppression of experimental allergic encephalomyelitis by intraventricular administration of interferon-gamma in Lewis rats. Clin. Exp. Immunol. 1990. 81: 183188.
  • 57
    Panitch, H. S., Hirsch, R. L., Schindler, J. and Johnson, K. P., Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 1987. 37: 10971102.
  • 58
    Gocke, A. R., Cravens, P. D., Ben, L. H., Hussain, R. Z., Northrop, S. C., Racke, M. K. and Lovett-Racke, A. E., T-bet regulates the fate of Th1 and Th17 lymphocytes in autoimmunity. J. Immunol. 2007. 178: 13411348.
  • 59
    Kolls, J. K. and Linden, A., Interleukin-17 family members and inflammation. Immunity 2004. 21: 467476.
  • 60
    Ishigame, H., Kakuta, S., Nagai, T., Kadoki, M., Nambu, A., Komiyama, Y., Fujikado, N. et al., Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 2009. 30: 108119.
  • 61
    Komiyama, Y., Nakae, S., Matsuki, T., Nambu, A., Ishigame, H., Kakuta, S., Sudo, K. et al., IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 2006. 177: 566573.
  • 62
    Haak, S., Croxford, A. L., Kreymborg, K., Heppner, F. L., Pouly, S., Becher, B. and Waisman, A., IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J. Clin. Invest. 2009. 119: 6169.
  • 63
    Kreymborg, K., Etzensperger, R., Dumoutier, L., Haak, S., Rebollo, A., Buch, T., Heppner, F. L. et al., IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J. Immunol. 2007. 179: 80988104.
  • 64
    Leppkes, M., Becker, C., Ivanov, II, Hirth, S., Wirtz, S., Neufert, C., Pouly, S. et al., RORgamma-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology 2009. 136: 257267.
  • 65
    O'Connor, W., Jr., Kamanaka, M., Booth, C. J., Town, T., Nakae, S., Iwakura, Y., Kolls, J. K. et al., A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat. Immunol. 2009. 10: 603609.
  • 66
    Hofstetter, H. H., Ibrahim, S. M., Koczan, D., Kruse, N., Weishaupt, A., Toyka, K. V. and Gold, R., Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis. Cell Immunol. 2005. 237: 123130.
  • 67
    Aggarwal, S., Ghilardi, N., Xie, M. H., de Sauvage, F. J. and Gurney, A. L., Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 2003. 278: 19101914.
  • 68
    Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T. B., Oukka, M., Weiner, H. L. et al., Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006. 441: 235238.
  • 69
    Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. and Stockinger, B., TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006. 24: 179189.
  • 70
    Kuruvilla, A. P., Shah, R., Hochwald, G. M., Liggitt, H. D., Palladino, M. A. and Thorbecke, G. J., Protective effect of transforming growth factor beta 1 on experimental autoimmune diseases in mice. Proc. Natl. Acad. Sci. USA 1991. 88: 29182921.
  • 71
    Racke, M. K., Dhib-Jalbut, S., Cannella, B., Albert, P. S., Raine, C. S. and McFarlin, D. E., Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-beta 1. J. Immunol. 1991. 146: 30123017.
  • 72
    Ghoreschi, K., Laurence, A., Yang, X. P., Tato, C. M., McGeachy, M. J., Konkel, J. E., Ramos, H. L., Wei, L. et al., Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 2010. 467: 967971.
  • 73
    McGeachy, M. J., Bak-Jensen, K. S., Chen, Y., Tato, C. M., Blumenschein, W., McClanahan, T. and Cua, D. J., TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat. Immunol. 2007. 8: 13901397.
  • 74
    Korn, T., Bettelli, E., Gao, W., Awasthi, A., Jager, A., Strom, T. B., Oukka, M. et al., IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 2007. 448: 484487.
  • 75
    Mangan, P. R., Harrington, L. E., O'Quinn, D. B., Helms, W. S., Bullard, D. C., Elson, C. O., Hatton, R. D. et al., Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006. 441: 231234.
  • 76
    Rothhammer, V., Heink, S., Petermann, F., Srivastava, R., Claussen, M. C., Hemmer, B. and Korn, T., Th17 lymphocytes traffic to the central nervous system independently of alpha4 integrin expression during EAE. J. Exp. Med. 2011. 208: 24652476.
  • 77
    O'Connor, R. A., Prendergast, C. T., Sabatos, C. A., Lau, C. W., Leech, M. D., Wraith, D. C. and Anderton, S. M., Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J. Immunol. 2008. 181: 37503754.
  • 78
    Codarri, L., Gyulveszi, G., Tosevski, V., Hesske, L., Fontana, A., Magnenat, L., Suter, T. et al., RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 2011. 12: 560567.
  • 79
    Hirota, K., Duarte, J. H., Veldhoen, M., Hornsby, E., Li, Y., Cua, D. J., Ahlfors, H. et al., Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 2011. 12: 255263.
  • 80
    Ahern, P. P., Schiering, C., Buonocore, S., McGeachy, M. J., Cua, D. J., Maloy, K. J. and Powrie, F., Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity. 33: 279288.
  • 81
    Kurschus, F. C., Croxford, A. L., Heinen, A. P., Wortge, S., Ielo, D. and Waisman, A., Genetic proof for the transient nature of the Th17 phenotype. Eur. J. Immunol. 40: 33363346.
  • 82
    Meeks, K. D., Sieve, A. N., Kolls, J. K., Ghilardi, N. and Berg, R. E., IL-23 is required for protection against systemic infection with Listeria monocytogenes. J. Immunol. 2009. 183: 80268034.
  • 83
    Riol-Blanco, L., Lazarevic, V., Awasthi, A., Mitsdoerffer, M., Wilson, B. S., Croxford, A., Waisman, A. et al., IL-23 receptor regulates unconventional IL-17-producing T cells that control bacterial infections. J. Immunol. 2010. 184: 17101720.
  • 84
    Van Belle, A. B., de Heusch, M., Lemaire, M. M., Hendrickx, E., Warnier, G., Dunussi-Joannopoulos, K., Fouser, L. A. et al., IL-22 is required for imiquimod-induced psoriasiform skin inflammation in mice. J. Immunol. 2012. 188: 462469.
  • 85
    Wakita, D., Sumida, K., Iwakura, Y., Nishikawa, H., Ohkuri, T., Chamoto, K., Kitamura, H. et al., Tumor-infiltrating IL-17-producing gammadelta T cells support the progression of tumor by promoting angiogenesis. Eur. J. Immunol. 2010. 40: 19271937.
  • 86
    Sutton, C. E., Lalor, S. J., Sweeney, C. M., Brereton, C. F., Lavelle, E. C. and Mills, K. H., Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 2009. 31: 331341.
  • 87
    Cua, D. J. and Tato, C. M., Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10: 479489.
  • 88
    Petermann, F., Rothhammer, V., Claussen, M. C., Haas, J. D., Blanco, L. R., Heink, S., Prinz, I. et al., gammadelta T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity 2010. 33: 351363.
  • 89
    Cornelissen, F., Mus, A. M., Asmawidjaja, P. S., van Hamburg, J. P., Tocker, J. and Lubberts, E., Interleukin-23 is critical for full-blown expression of a non-autoimmune destructive arthritis and regulates interleukin-17A and RORgammat in gammadelta T cells. Arthritis Res. Ther. 2009. 11: R194.
  • 90
    Cai, Y., Shen, X., Ding, C., Qi, C., Li, K., Li, X., Jala, V. R. et al., Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity 35: 596610.
  • 91
    Pantelyushin, S., Haak, S., Ingold, B., Kulig, P., Heppner, F. L., Navarini, A. A. and Becher, B., Rorgammat+ innate lymphocytes and gammadelta T cells initiate psoriasiform plaque formation in mice. J. Clin. Invest 122: 22522256.
  • 92
    Di Cesare, A., Di Meglio, P. and Nestle, F. O., The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J. Invest Dermatol. 2009. 129: 13391350.
  • 93
    Harper, E. G., Guo, C., Rizzo, H., Lillis, J. V., Kurtz, S. E., Skorcheva, I., Purdy, D. et al., Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: implications for psoriasis pathogenesis. J. Invest Dermatol. 2009. 129: 21752183.
  • 94
    Lowes, M. A., Kikuchi, T., Fuentes-Duculan, J., Cardinale, I., Zaba, L. C., Haider, A. S., Bowman, E. P. et al., Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J. Invest Dermatol. 2008. 128: 12071211.
  • 95
    van der Fits, L., Mourits, S., Voerman, J. S., Kant, M., Boon, L., Laman, J. D., Cornelissen, F. et al., Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 2009. 182: 58365845.
  • 96
    Hue, S., Ahern, P., Buonocore, S., Kullberg, M. C., Cua, D. J., McKenzie, B. S., Powrie, F. et al., Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J. Exp. Med. 2006. 203: 24732483.
  • 97
    Uhlig, H. H., McKenzie, B. S., Hue, S., Thompson, C., Joyce-Shaikh, B., Stepankova, R., Robinson, N. et al., Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 2006. 25: 309318.
  • 98
    Buonocore, S., Ahern, P. P., Uhlig, H. H., Ivanov, II, Littman, D. R., Maloy, K. J. and Powrie, F., Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 2010. 464: 13711375.
  • 99
    Korn, T., Oukka, M., Kuchroo, V. and Bettelli, E., Th17 cells: effector T cells with inflammatory properties. Semin. Immunol. 2007. 19: 362371.
  • 100
    Hanahan, D. and Weinberg, R. A., Hallmarks of cancer: the next generation. Cell 144: 646674.
  • 101
    Lo, C. H., Lee, S. C., Wu, P. Y., Pan, W. Y., Su, J., Cheng, C. W., Roffler, S. R. et al., Antitumor and antimetastatic activity of IL-23. J. Immunol. 2003. 171: 600607.
  • 102
    Langowski, J. L., Zhang, X., Wu, L., Mattson, J. D., Chen, T., Smith, K., Basham, B. et al., IL-23 promotes tumour incidence and growth. Nature 2006. 442: 461465.
  • 103
    Martin-Orozco, N., Muranski, P., Chung, Y., Yang, X. O., Yamazaki, T., Lu, S. et al., T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 2009. 31: 787798.
  • 104
    Muranski, P., Boni, A., Antony, P. A., Cassard, L., Irvine, K. R., Kaiser, A., Paulos, C. M. et al., Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 2008. 112: 362373.
  • 105
    Chae, W. J., Gibson, T. F., Zelterman, D., Hao, L., Henegariu, O. and Bothwell, A. L., Ablation of IL-17A abrogates progression of spontaneous intestinal tumorigenesis. Proc. Natl. Acad. Sci. USA 107: 55405544.
  • 106
    Wang, L., Yi, T., Kortylewski, M., Pardoll, D. M., Zeng, D. and Yu, H., IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J. Exp. Med. 2009. 206: 14571464.
  • 107
    van Elsas, A., Hurwitz, A. A. and Allison, J. P., Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med. 1999. 190: 355366.
  • 108
    Kobayashi, M., Fitz, L., Ryan, M., Hewick, R. M., Clark, S. C., Chan, S., Loudon, R. et al., Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J. Exp. Med. 1989. 170: 827845.
  • 109
    Presky, D. H., Yang, H., Minetti, L. J., Chua, A. O., Nabavi, N., Wu, C. Y., Gately, M. K. et al., A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. Proc. Natl. Acad. Sci. USA 1996. 93: 1400214007.