• 1
    Godbout, J. P. and Glaser, R., Stress-induced immune dysregulation: implications for wound healing, infectious disease and cancer. J. Neuroimmune Pharmacol. 2006. 1: 421427.
  • 2
    Khansari, D. N., Murgo, A. J. and Faith, R. E., Effects of stress on the immune system. Immunol. Today 1990. 11: 170175.
  • 3
    Padgett, D. A. and Glaser, R., How stress influences the immune response. Trends Immunol. 2003. 24: 444448.
  • 4
    Cohen, S., Tyrrell, D. A. and Smith, A. P., Psychological stress and susceptibility to the common cold. N. Engl. J. Med. 1991. 325: 606612.
  • 5
    Chen, E. and Miller, G. E., Stress and inflammation in exacerbations of asthma. Brain Behav. Immun. 2007. 21: 993999.
  • 6
    de Kloet, E. R., Joels, M. and Holsboer, F., Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci. 2005. 6: 463475.
  • 7
    Gunnar, M. and Quevedo, K., The neurobiology of stress and development. Annu. Rev. Psychol. 2007. 58: 145173.
  • 8
    Heesen, C., Gold, S. M., Huitinga, I. and Reul, J. M., Stress and hypothalamic-pituitary-adrenal axis function in experimental autoimmune encephalomyelitis and multiple sclerosis – a review. Psychoneuroendocrinology 2007. 32: 604618.
  • 9
    Barnes, P. J., How corticosteroids control inflammation: Quintiles Prize Lecture 2005. Br. J. Pharmacol. 2006. 148: 245254.
  • 10
    McEwen, B. S., Biron, C. A., Brunson, K. W., Bulloch, K., Chambers, W. H., Dhabhar, F. S., Goldfarb, R. H. et al., The role of adrenocorticoids as modulators of immune function in health and disease: neural, endocrine and immune interactions. Brain Res. Brain Res. Rev. 1997. 23: 79133.
  • 11
    Elenkov, I. J., Glucocorticoids and the Th1/Th2 balance. Ann. N Y Acad. Sci. 2004. 1024: 138146.
  • 12
    Palumbo, M. L., Canzobre, M. C., Pascuan, C. G., Rios, H., Wald, M. and Genaro, A. M., Stress induced cognitive deficit is differentially modulated in BALB/c and C57Bl/6 mice: correlation with Th1/Th2 balance after stress exposure. J. Neuroimmunol. 2010. 218: 1220.
  • 13
    Iwakabe, K., Shimada, M., Ohta, A., Yahata, T., Ohmi, Y., Habu, S. and Nishimura, T., The restraint stress drives a shift in Th1/Th2 balance toward Th2-dominant immunity in mice. Immunol. Lett. 1998. 62: 3943.
  • 14
    Teunis, M. A., Heijnen, C. J., Sluyter, F., Bakker, J. M., Van Dam, A. M., Hof, M., Cools, A. R. et al., Maternal deprivation of rat pups increases clinical symptoms of experimental autoimmune encephalomyelitis at adult age. J. Neuroimmunol. 2002. 133: 3038.
  • 15
    Boumpas, D. T., Chrousos, G. P., Wilder, R. L., Cupps, T. R. and Balow, J. E., Glucocorticoid therapy for immune-mediated diseases: basic and clinical correlates. Ann. Intern. Med. 1993. 119: 11981208.
  • 16
    Barnes, P. J. and Adcock, I., Anti-inflammatory actions of steroids: molecular mechanisms. Trends Pharmacol. Sci. 1993. 14: 436441.
  • 17
    Gold, S. M. and Heesen, C., Stress and disease progression in multiple sclerosis and its animal models. Neuroimmunomodulation 2006. 13: 318326.
  • 18
    Ackerman, K. D., Heyman, R., Rabin, B. S., Anderson, B. P., Houck, P. R., Frank, E. and Baum, A., Stressful life events precede exacerbations of multiple sclerosis. Psychosom. Med. 2002. 64: 916920.
  • 19
    Evers, A. W., Verhoeven, E. W., Kraaimaat, F. W., de Jong, E. M., de Brouwer, S. J., Schalkwijk, J., Sweep, F. C. et al., How stress gets under the skin: cortisol and stress reactivity in psoriasis. Br. J. Dermatol. 2010. 163: 986991.
  • 20
    Basavaraj, K. H., Navya, M. A. and Rashmi, R., Stress and quality of life in psoriasis: an update. Int. J. Dermatol. 2011. 50: 783792.
  • 21
    Murphy, A. C., Lalor, S. J., Lynch, M. A. and Mills, K. H., Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav. Immun. 2010. 24: 641651.
  • 22
    Tokura, Y., Mori, T. and Hino, R., Psoriasis and other Th17-mediated skin diseases. J. Uoeh 2010. 32: 317328.
  • 23
    Yao, C., Sakata, D., Esaki, Y., Li, Y., Matsuoka, T., Kuroiwa, K., Sugimoto, Y. et al., Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nat. Med. 2009. 15: 633640.
  • 24
    Bauer, M. E., Vedhara, K., Perks, P., Wilcock, G. K., Lightman, S. L. and Shanks, N., Chronic stress in caregivers of dementia patients is associated with reduced lymphocyte sensitivity to glucocorticoids. J. Neuroimmunol. 2000. 103: 8492.
  • 25
    Miller, G. E., Cohen, S. and Ritchey, A. K., Chronic psychological stress and the regulation of pro-inflammatory cytokines: a glucocorticoid-resistance model. Health Psychol. 2002. 21: 531541.
  • 26
    Schmidt, D., Reber, S. O., Botteron, C., Barth, T., Peterlik, D., Uschold, N., Mannel, D. N. et al., Chronic psychosocial stress promotes systemic immune activation and the development of inflammatory Th cell responses. Brain Behav. Immun. 2010. 24: 10971104.
  • 27
    Freier, E., Weber, C. S., Nowottne, U., Horn, C., Bartels, K., Meyer, S., Hildebrandt, Y., Luetkens, T. et al., Decrease of CD4(+)FOXP3(+) T regulatory cells in the peripheral blood of human subjects undergoing a mental stressor. Psychoneuroendocrinology 2010. 35: 663673.
  • 28
    Sommershof, A., Aichinger, H., Engler, H., Adenauer, H., Catani, C., Boneberg, E. M., Elbert, T. et al., Substantial reduction of naive and regulatory T cells following traumatic stress. Brain Behav. Immun. 2009. 23: 11171124.
  • 29
    Xiang, L. and Marshall, G. D., Jr., Immunomodulatory effects of in vitro stress hormones on FoxP3, Th1/Th2 cytokine and costimulatory molecule mRNA expression in human peripheral blood mononuclear cells. Neuroimmunomodulation 2011. 18: 110.
  • 30
    Harro, J., Tonissaar, M., Eller, M., Kask, A. and Oreland, L., Chronic variable stress and partial 5-HT denervation by parachloroamphetamine treatment in the rat: effects on behavior and monoamine neurochemistry. Brain Res. 2001. 899: 227239.
  • 31
    de Pablos, R. M., Villaran, R. F., Arguelles, S., Herrera, A. J., Venero, J. L., Ayala, A., Cano, J. et al., Stress increases vulnerability to inflammation in the rat prefrontal cortex. J. Neurosci. 2006. 26: 57095719.
  • 32
    Miller, T. A. and Schaefer, F. W., 3rd, Changes in mouse circulating leukocyte numbers in C57BL/6 mice immunosuppressed with dexamethasone for Cryptosporidium parvum oocyst production. Vet Parasitol. 2007. 149: 147157.
  • 33
    Hall, E. D., The neuroprotective pharmacology of methylprednisolone. J. Neurosurg. 1992. 76: 1322.
  • 34
    Banham, A. H., Cell-surface IL-7 receptor expression facilitates the purification of FOXP3(+) regulatory T cells. Trends Immunol. 2006. 27: 541544.
  • 35
    Schweingruber, N., Reichardt, S. D., Luhder, F. and Reichardt, H. M., Mechanisms of glucocorticoids in the control of neuroinflammation. J. Neuroendocrinol. 2012. 24: 17482.
  • 36
    Miljkovic, Z., Momcilovic, M., Miljkovic, D. and Mostarica-Stojkovic, M., Methylprednisolone inhibits IFN-gamma and IL-17 expression and production by cells infiltrating central nervous system in experimental autoimmune encephalomyelitis. J. Neuroinflammation 2009. 6: 37.
  • 37
    Frank, M. G., Thompson, B. M., Watkins, L. R. and Maier, S. F., Glucocorticoids mediate stress-induced priming of microglial pro-inflammatory responses. Brain Behav. Immun. 2012. 26: 337345.
  • 38
    Lim, H. Y., Muller, N., Herold, M. J., van den Brandt, J. and Reichardt, H. M., Glucocorticoids exert opposing effects on macrophage function dependent on their concentration. Immunology 2007. 122: 4753.
  • 39
    Goodin, D. S., The impact of war-stress on MS exacerbations. Ann. Neurol. 2008. 64: 114115.
  • 40
    Maunder, R. G. and Levenstein, S., The role of stress in the development and clinical course of inflammatory bowel disease: epidemiological evidence. Curr. Mol. Med. 2008. 8: 247252.
  • 41
    Young, E. E., Sieve, A. N., Vichaya, E. G., Carcoba, L. M., Young, C. R., Ambrus, A., Storts, R. et al., Chronic restraint stress during early Theiler's virus infection exacerbates the subsequent demyelinating disease in SJL mice: II. CNS disease severity. J. Neuroimmunol. 2010. 220: 7989.
  • 42
    Columba-Cabezas, S., Iaffaldano, G., Chiarotti, F., Alleva, E. and Cirulli, F., Early handling increases susceptibility to experimental autoimmune encephalomyelitis (EAE) in C57BL/6 male mice. J. Neuroimmunol. 2009. 212: 1016.
  • 43
    Flaherty, D. K., McGarity, K. L., Winzenburger, P. and Panyik, M., The effect of continuous corticosterone administration on lymphocyte subpopulations in the peripheral blood of the Fischer 344 rat as determined by two color flow cytometric analyses. Immunopharmacol. Immunotoxicol. 1993. 15: 583604.
  • 44
    Batuman, O. A., Sajewski, D., Ottenweller, J. E., Pitman, D. L. and Natelson, B. H., Effects of repeated stress on T cell numbers and function in rats. Brain Behav. Immun. 1990. 4: 105117.
  • 45
    Gagliardi, L., Ho, J. T. and Torpy, D. J., Corticosteroid-binding globulin: the clinical significance of altered levels and heritable mutations. Mole. Cell. Endocrinol. 2010. 316: 2434.
  • 46
    Seale, J. V., Wood, S. A., Atkinson, H. C., Bate, E., Lightman, S. L., Ingram, C. D., Jessop, D. S. et al., Gonadectomy reverses the sexually diergic patterns of circadian and stress-induced hypothalamic-pituitary-adrenal axis activity in male and female rats. J. Neuroendocrinol. 2004. 16: 516524.
  • 47
    Wei, T. and Lightman, S. L., The neuroendocrine axis in patients with multiple sclerosis. Brain 1997. 120(Pt 6): 10671076.
  • 48
    Huitinga, I., Erkut, Z. A., van Beurden, D. and Swaab, D. F., Impaired hypothalamus-pituitary-adrenal axis activity and more severe multiple sclerosis with hypothalamic lesions. Ann. Neurol. 2004. 55: 3745.
  • 49
    Stefferl, A., Storch, M. K., Linington, C., Stadelmann, C., Lassmann, H., Pohl, T., Holsboer, F. et al., Disease progression in chronic relapsing experimental allergic encephalomyelitis is associated with reduced inflammation-driven production of corticosterone. Endocrinology 2001. 142: 36163624.
  • 50
    Viveros-Paredes, J. M., Puebla-Perez, A. M., Gutierrez-Coronado, O., Sandoval-Ramirez, L. and Villasenor-Garcia, M. M., Dysregulation of the Th1/Th2 cytokine profile is associated with immunosuppression induced by hypothalamic-pituitary-adrenal axis activation in mice. Int. Immunopharmacol. 2006. 6: 774781.
  • 51
    Braun, C. M., Huang, S. K., Bashian, G. G., Kagey-Sobotka, A., Lichtenstein, L. M. and Essayan, D. M., Corticosteroid modulation of human, antigen-specific Th1 and Th2 responses. J. Allergy Clin. Immunol. 1997. 100: 400407.
  • 52
    Hoglund, C. O., Axen, J., Kemi, C., Jernelov, S., Grunewald, J., Muller-Suur, C., Smith, Y., Gronneberg, R. et al., Changes in immune regulation in response to examination stress in atopic and healthy individuals. Clin. Exp. Allergy 2006. 36: 982992.
  • 53
    Saul, A. N., Oberyszyn, T. M., Daugherty, C., Kusewitt, D., Jones, S., Jewell, S., Malarkey, W. B. et al., Chronic stress and susceptibility to skin cancer. J. Natl. Cancer Inst. 2005. 97: 17601767.
  • 54
    Shen, L. S., Wang, J., Shen, D. F., Yuan, X. L., Dong, P., Li, M. X., Xue, J. et al., CD4(+)CD25(+)CD127(low/-) regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression. Clin. Immunol. 2009. 131: 109118.
  • 55
    Serra, M., Sanna, E., Mostallino, M. C. and Biggio, G., Social isolation stress and neuroactive steroids. Eur. Neuropsychopharmacol. 2007. 17: 111.
  • 56
    Staples, L. G., Predator odor avoidance as a rodent model of anxiety: learning-mediated consequences beyond the initial exposure. Neurobiol Learn Mem. 2010. 94: 435445.
  • 57
    Young, E. E., Sieve, A. N., Vichaya, E. G., Carcoba, L. M., Young, C. R., Ambrus, A., Storts, R. et al., Chronic restraint stress during early Theiler's virus infection exacerbates the subsequent demyelinating disease in SJL mice: II. CNS disease severity. J. Neuroimmunol. 2010. 220: 7989.
  • 58
    Zhu, G. F., Chancellor-Freeland, C., Berman, A. S., Kage, R., Leeman, S. E., Beller, D. I. and Black, P. H., Endogenous substance P mediates cold water stress-induced increase in interleukin-6 secretion from peritoneal macrophages. J. Neurosci. 1996. 16: 37453752.