• 1
    Friedman, D. J., Kunzli, B. M., Rahim, Y. I., Sevigny, J., Berberat, P. O., Enjyoji, K., Csizmadia, al.,From the cover: CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease. Proc. Natl. Acad. Sci. USA 2009. 106: 1678816793.
  • 2
    Louis, N. A., Robinson, A. M., MacManus, C. F., Karhausen, J., Scully, M.andColgan, S. P., Control of IFN-alphaA by CD73: implications for mucosal inflammation. J. Immunol. 2008. 180: 42464255.
  • 3
    Atarashi, K., Nishimura, J., Shima, T., Umesaki, Y., Yamamoto, M., Onoue, M., Yagita, H. et al.,ATP drives lamina propria T(H)17 cell differentiation. Nature 2008. 455: 808812.
  • 4
    Deaglio, S., Dwyer, K. M., Gao, W., Friedman, D., Usheva, A., Erat, A., Chen, J. F. et al., Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 2007. 204: 12571265.
  • 5
    Odashima, M., Bamias, G., Rivera-Nieves, J., Linden, J., Nast, C. C., Moskaluk, C. A., Marini, M. et al., Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease. Gastroenterology 2005. 129: 2633.
  • 6
    Lappas, C. M., Rieger, J. M.and Linden, J., A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. J. Immunol. 2005. 174: 10731080.
  • 7
    Dwyer, K. M., Hanidziar, D., Putheti, P., Hill, P. A., Pommey, S., McRae, J. L., Winterhalter, A. et al., Expression of CD39 by human peripheral blood CD4+ CD25+ T cells denotes a regulatory memory phenotype. Am. J. Transplant. 2010. 10: 24102420.
  • 8
    Yang, L., Kobie, J. J. and Mosmann, T. R., CD73 and Ly-6A/E distinguish in vivo primed but uncommitted mouse CD4 T cells from type 1 or type 2 effector cells. J. Immunol. 2005. 175: 64586464.
  • 9
    Sarra, M., Monteleone, I., Stolfi, C., Fantini, M. C., Sileri, P., Sica, G., Tersigni, R. et al., Interferon-gamma-expressing cells are a major source of interleukin-21 in inflammatory bowel diseases. Inflamm. Bowel. Dis. 2010. 16: 13321339.
  • 10
    Yang, X. O., Nurieva, R., Martinez, G. J., Kang, H. S., Chung, Y., Pappu, B. P., Shah, B. et al., Molecular antagonism and plasticity of regulatory and inflammatory T-cell programs. Immunity 2008. 29: 4456.
  • 11
    Zhou, Q., Yan, J., Putheti, P., Wu, Y., Sun, X., Toxavidis, V., Tigges, J. et al., Isolated CD39 expression on CD4+ T cells denotes both regulatory and memory populations. Am. J. Transplant. 2009. 9: 23032311.
  • 12
    Rybaczyk, L., Rozmiarek, A., Circle, K., Grants, I., Needleman, B., Wunderlich, J. E., Huang, K. et al., New bioinformatics approach to analyze gene expressions and signaling pathways reveals unique purine gene dysregulation profiles that distinguish between CD and UC. Inflamm. Bowel. Dis. 2009. 15: 971984.
  • 13
    Dwyer, K. M., Deaglio, S., Gao, W., Friedman, D., Strom, T. B. and Robson, S. C., CD39 and control of cellular immune responses. Purinergic. Signal. 2007. 3: 171180.
  • 14
    Fletcher, J. M., Lonergan, R., Costelloe, L., Kinsella, K., Moran, B., O'Farrelly, C., Tubridy, N. et al., CD39+Foxp3+ regulatory T cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J. Immunol. 2009. 183: 76027610.
  • 15
    Mills, J. H., Thompson, L. F., Mueller, C., Waickman, A. T., Jalkanen, S., Niemela, J., Airas, L. et al., CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 2008. 105: 93259330.
  • 16
    Resta, R., Yamashita, Y. and Thompson, L. F., Ecto-enzyme and signaling functions of lymphocyte CD73. Immunol. Rev. 1998. 161: 95109.
  • 17
    Alam, M. S., Kurtz, C. C., Rowlett, R. M., Reuter, B. K., Wiznerowicz, E., Das, S., Linden, J. et al., CD73 is expressed by human regulatory T helper cells and suppresses proinflammatory cytokine production and Helicobacter felis-induced gastritis in mice. J. Infect. Dis. 2009. 199: 494504.
  • 18
    Deaglio, S. and Robson, S. C., Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity. Adv. Pharmacol. 2011. 61: 301332.
  • 19
    Totsuka, T., Kanai, T., Nemoto, Y., Tomita, T., Tsuchiya, K., Sakamoto, N., Okamoto, R. et al., Immunosenescent colitogenic CD4(+) T cells convert to regulatory cells and suppress colitis. Eur. J. Immunol. 2008. 38: 12751286.
  • 20
    Beriou, G., Costantino, C. M., Ashley, C. W., Yang, L., Kuchroo, V. K., Baecher-Allan, C.and Hafler, D. A., IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 2009. 113: 42404249.
  • 21
    Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T. B., Oukka, M., Weiner, H. L. et al., Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006. 441: 235238.
  • 22
    Tomita, T., Kanai, T., Fujii, T., Nemoto, Y., Okamoto, R., Tsuchiya, K., Totsuka, T. et al., Continuous generation of colitogenic CD4(+) T cells in persistent colitis. Eur. J. Immunol. 2008. 38: 12641274.
  • 23
    Nemoto, Y., Kanai, T., Kameyama, K., Shinohara, T., Sakamoto, N., Totsuka, T., Okamoto, R. et al., Long-lived colitogenic CD4+ memory T cells residing outside the intestine participate in the perpetuation of chronic colitis. J. Immunol. 2009. 183: 50595068.
  • 24
    Tomita, T., Kanai, T., Nemoto, Y., Fujii, T., Nozaki, K., Okamoto, R., Tsuchiya, K. et al., Colitogenic CD4 +effector-memory T cells actively recirculate in chronic colitic mice. Inflamm. Bowel. Dis. 2008. 14: 16301640.
  • 25
    Naganuma, M., Wiznerowicz, E. B., Lappas, C. M., Linden, J., Worthington, M. T. and Ernst, P. B., Cutting edge: critical role for A2A adenosine receptors in the T-cell-mediated regulation of colitis. J. Immunol. 2006. 177: 27652769.
  • 26
    Odashima, M., Bamias, G., Rivera-Nieves, J., Linden, J., Nast, C. C., Moskaluk, C. A., Marini, M. et al., Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease. Gastroenterology 2005. 129: 2633.
  • 27
    Morabito, L., Montesinos, M. C., Schreibman, D. M., Balter, L., Thompson, L. F., Resta, R., Carlin, G. et al., Methotrexate and sulfasalazine promote adenosine release by a mechanism that requires ecto-5’-nucleotidase-mediated conversion of adenine nucleotides. J. Clin. Invest. 1998. 101: 295300.
  • 28
    Riksen, N. P., Barrera, P., van den Broek, P. H., van Riel, P. L., Smits, P. and Rongen, G. A., Methotrexate modulates the kinetics of adenosine in humans in vivo. Ann. Rheum. Dis. 2006. 65: 465470.
  • 29
    Atreya, I. and Neurath, M. F., Understanding the delayed onset of action of azathioprine in IBD: are we there yet? Gut 2009. 58: 325326.