• 1
    Yu, R. K., Tsai, Y. T., Ariga, T. and Yanagisawa, M., Structures, biosynthesis, and functions of gangliosides-an overview. J. Oleo. Sci. 2011. 60: 537544.
  • 2
    de Leon, J., Fernandez, A., Mesa, C., Clavel, M. and Fernandez, L. E., Role of tumour-associated N-glycolylated variant of GM3 ganglioside in cancer progression: effect over CD4 expression on T cells. Cancer Immunol. Immunother. 2006. 55: 443450.
  • 3
    Potapenko, M., Shurin, G. V. and de Leon, J., Gangliosides as immunomodulators. Adv. Exp. Med. Biol. 2007. 601: 195203.
  • 4
    Irie, A., Koyama, S., Kozutsumi, Y., Kawasaki, T. and Suzuki, A., The molecular basis for the absence of N-glycolylneuraminic acid in humans. J. Biol. Chem. 1998. 273: 1586615871.
  • 5
    Irie, A. and Suzuki, A., CMP-N-Acetylneuraminic acid hydroxylase is exclusively inactive in humans. Biochem. Biophys. Res. Commun. 1998. 248: 330333.
  • 6
    Olson, M. V. and Varki, A., Sequencing the chimpanzee genome: insights into human evolution and disease. Nat. Rev. Genet. 2003. 4: 2028.
  • 7
    Devine, P. L., Clark, B. A., Birrell, G. W., Layton, G. T., Ward, B. G., Alewood, P. F. and McKenzie, I. F., The breast tumor-associated epitope defined by monoclonal antibody 3E1.2 is an O-linked mucin carbohydrate containing N-glycolylneuraminic acid. Cancer Res. 1991. 51: 58265836.
  • 8
    Kawai, T., Kato, A., Higashi, H., Kato, S. and Naiki, M., Quantitative determination of N-glycolylneuraminic acid expression in human cancerous tissues and avian lymphoma cell lines as a tumor-associated sialic acid by gas chromatography-mass spectrometry. Cancer Res. 1991. 51: 12421246.
  • 9
    Marquina, G., Waki, H., Fernandez, L. E., Kon, K., Carr, A., Valiente, O., Perez, R. and Ando, S., Gangliosides expressed in human breast cancer. Cancer Res. 1996. 56: 51655171.
  • 10
    Malykh, Y. N., Schauer, R. and Shaw, L., N-Glycolylneuraminic acid in human tumours. Biochimie 2001. 83: 623634.
  • 11
    Tangvoranuntakul, P., Gagneux, P., Diaz, S., Bardor, M., Varki, N., Varki, A. and Muchmore, E., Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc. Natl. Acad. Sci. USA 2003. 100: 1204512050.
  • 12
    Nguyen, D. H., Tangvoranuntakul, P. and Varki, A., Effects of natural human antibodies against a nonhuman sialic acid that metabolically incorporates into activated and malignant immune cells. J. Immunol. 2005. 175: 228236.
  • 13
    Yin, J., Hashimoto, A., Izawa, M., Miyazaki, K., Chen, G. Y., Takematsu, H., Kozutsumi, Y. et al., Hypoxic culture induces expression of sialin, a sialic acid transporter, and cancer-associated gangliosides containing non-human sialic acid on human cancer cells. Cancer Res. 2006. 66: 29372945.
  • 14
    Alfonso, M., Diaz, A., Hernandez, A. M., Perez, A., Rodriguez, E., Bitton, R., Perez, R. and Vazquez, A. M., An anti-idiotype vaccine elicits a specific response to N-glycolyl sialic acid residues of glycoconjugates in melanoma patients. J. Immunol. 2002. 168: 25232529.
  • 15
    Diaz, A., Alfonso, M., Alonso, R., Saurez, G., Troche, M., Catala, M., Diaz, R. M. et al., Immune responses in breast cancer patients immunized with an anti-idiotype antibody mimicking NeuGc-containing gangliosides. Clin. Immunol. 2003. 107: 8089.
  • 16
    Neninger, E., Diaz, R. M., de la Torre, A., Rives, R., Diaz, A., Saurez, G., Gabri, M. R. et al., Active immunotherapy with 1E10 anti-idiotype vaccine in patients with small cell lung cancer: report of a phase I trial. Cancer Biol. Ther. 2007. 6: 145150.
  • 17
    Hernandez, A. M., Toledo, D., Martinez, D., Grinan, T., Brito, V., Macias, A., Alfonso, S. et al., Characterization of the antibody response against NeuGcGM3 ganglioside elicited in non-small cell lung cancer patients immunized with an anti-idiotype antibody. J. Immunol. 2008. 181: 66256634.
  • 18
    Hernandez, A. M., Rodriguez, N., Gonzalez, J. E., Reyes, E., Rondon, T., Grinan, T., Macias, A. et al., Anti-NeuGcGM3 antibodies, actively elicited by idiotypic vaccination in nonsmall cell lung cancer patients, induce tumor cell death by an oncosis-like mechanism. J. Immunol. 2011. 186: 37353744.
  • 19
    Ravindranath, R. M., Ravindranath, M. H. and Graves, M. C., Augmentation of natural antiganglioside IgM antibodies in lower motor neuron disease (LMND) and role of CD5+ B cells. Cell. Mol. Life Sci. 1997. 53: 750758.
  • 20
    Roque-Navarro, L., Chakrabandhu, K., de Leon, J., Rodriguez, S., Toledo, C., Carr, A., de Acosta, C. M. et al., Anti-ganglioside antibody-induced tumor cell death by loss of membrane integrity. Mol. Cancer Ther. 2008. 7: 20332041.
  • 21
    Fan, T. J., Han, L. H., Cong, R. S. and Liang, J., Caspase family proteases and apoptosis. Acta. Biochim. Biophys. Sin. (Shanghai) 2005. 37: 719727.
  • 22
    Baumgarth, N., Tung, J. W. and Herzenberg, L. A., Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin. Immunopathol. 2005. 26: 347362.
  • 23
    Binder, C. J., Natural IgM antibodies against oxidation-specific epitopes. J. Clin. Immunol. 2010. 30(Suppl 1): S56S60.
  • 24
    Lutz, H. U. and Miescher, S., Natural antibodies in health and disease: an overview of the first international workshop on natural antibodies in health and disease. Autoimmun. Rev. 2008. 7: 405409.
  • 25
    Ravindranath, M. H., Yesowitch, P., Sumobay, C. and Morton, D. L., Glycoimmunomics of human cancer: current concepts and future perspectives. Future Oncol. 2007. 3: 201214.
  • 26
    Erttmann, R., Treatment of neuroblastoma with human natural antibodies. Autoimmun. Rev. 2008. 7: 496500.
  • 27
    Schwartz-Albiez, R., Laban, S., Eichmuller, S. and Kirschfink, M., Cytotoxic natural antibodies against human tumours: an option for anti-cancer immunotherapy? Autoimmun. Rev. 2008. 7: 491495.
  • 28
    Schwartz-Albiez, R., Monteiro, R. C., Rodriguez, M., Binder, C. J. and Shoenfeld, Y., Natural antibodies, intravenous immunoglobulin and their role in autoimmunity, cancer and inflammation. Clin. Exp. Immunol. 2009. 158(Suppl 1): 4350.
  • 29
    Vollmers, H. P. and Brandlein, S., Natural antibodies and cancer. N. Biotechnol. 2009. 25: 294298.
  • 30
    Padler-Karavani, V., Yu, H., Cao, H., Chokhawala, H., Karp, F., Varki, N., Chen, X. and Varki, A., Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology 2008. 18: 818830.
  • 31
    Mauri, L., Casellato, R., Ciampa, M. G., Uekusa, Y., Kato, K., Kaida, K., Motoyama, M. et al., Anti-GM1/GD1a complex antibodies in GBS sera specifically recognize the hybrid dimer GM1-GD1a. Glycobiology 2012. 22: 352360.
  • 32
    Hedlund, M., Padler-Karavani, V., Varki, N. M. and Varki, A., Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. Proc. Natl. Acad. Sci. USA 2008. 105: 1893618941.
  • 33
    Padler-Karavani, V., Hurtado-Ziola, N., Pu, M., Yu, H., Huang, S., Muthana, S., Chokhawala, H. A. et al., Human xeno-autoantibodies against a non-human sialic acid serve as novel serum biomarkers and immunotherapeutics in cancer. Cancer Res. 2011. 71: 33523363.
  • 34
    Angata, T. and Varki, A., Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem. Rev. 2002. 102: 439469.
  • 35
    Paul, J. R. and Bunnell, W. W., The presence of heterophile antibodies in infectious mononucleosis. Am. J. Med. Sci. 1932. 183: 90103.
  • 36
    Hallgren, H. M., Buckley, C. E., 3rd, Gilbertsen, V. A. and Yunis, E. J., Lymphocyte phytohemagglutinin responsiveness, immunoglobulins and autoantibodies in aging humans. J. Immunol. 1973. 111: 11011107.
  • 37
    Weksler, M. E., Russo, C. and Siskind, G. W., Peripheral T cells select the B-cell repertoire in old mice. Immunol. Rev. 1989. 110: 173185.
  • 38
    Weksler, M. C., Innes, J. D. and Goldstein, G., Immunological studies of aging. IV. The contribution of thymic involution to the immune deficiencies of aging mice and reversal with thymopoietin32-36. J. Exp. Med. 1978. 148: 9961006.
  • 39
    Griffin, D. O., Holodick, N. E. and Rothstein, T. L., Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. J. Exp. Med. 2011. 208: 6780.
  • 40
    Baumgarth, N., The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat. Rev. Immunol. 2011. 11: 3446.
  • 41
    van Cruijsen, H., Ruiz, M. G., van der Valk, P., de Gruijl, T. D. and Giaccone, G., Tissue microarray analysis of ganglioside N-glycolyl GM3 expression and signal transducer and activator of transcription (STAT)-3 activation in relation to dendritic cell infiltration and microvessel density in non-small cell lung cancer. BMC Cancer 2009. 9: 180–188.
  • 42
    Blanco, R., Rengifo, C. E., Cedeno, M., Frometa, M., Rengifo, E. and Carr, A., Immunoreactivity of the 14F7 Mab (Raised against N-Glycolyl GM3 Ganglioside) as a positive prognostic factor in non-small-cell lung cancer. Patholog. Res. Int. 2012. 2012: 235418.
  • 43
    Hayashi, N., Chiba, H., Kuronuma, K., Go, S., Hasegawa, Y., Takahashi, M., Gasa, S. et al., Detection of N-glycolyated gangliosides in non-small-cell lung cancer using GMR8 monoclonal antibody. Cancer Sci. 2012. 104: 4347.
  • 44
    Perez, C. A., Ravindranath, M. H., Soh, D., Gonzales, A., Ye, W. and Morton, D. L., Serum anti-ganglioside IgM antibodies in soft tissue sarcoma: clinical prognostic implications Cancer J. 2002. 8: 384394.
  • 45
    Stults, C. L., Sweeley, C. C. and Macher, B. A., Glycosphingolipids: structure, biological source, and properties. Methods Enzymol. 1989. 179: 167214.
  • 46
    Fernandez-Marrero, Y., Hernandez, T., Roque-Navarro, L., Talavera, A., Moreno, E., Grinan, T., Vazquez, A. M. et al., Switching on cytotoxicity by a single mutation at the heavy chain variable region of an anti-ganglioside antibody. Mol. Immunol. 2011. 48: 10591067.
  • 47
    Boyum, A., Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand. J. Clin. Lab. Invest. Suppl. 1968. 97: 7789.
  • 48
    Ravindranath, M. H., Muthugounder, S., Saravanan, T. S., Presser, N. and Morton, D. L., Human antiganglioside autoantibodies: validation of ELISA. Ann. N. Y. Acad. Sci. 2005. 1050: 229242.
  • 49
    Sandhoff, R., Hepbildikler, S. T., Jennemann, R., Geyer, R., Gieselmann, V., Proia, R. L., Wiegandt, H. et al., Kidney sulfatides in mouse models of inherited glycosphingolipid disorders: determination by nano-electrospray ionization tandem mass spectrometry. J. Biol. Chem. 2002. 277: 2038620398.
  • 50
    Carr, A., Mullet, A., Mazorra, Z., Vazquez, A. M., Alfonso, M., Mesa, C., Rengifo, E. et al., A mouse IgG1 monoclonal antibody specific for N-glycolyl GM3 ganglioside recognized breast and melanoma tumors. Hybridoma 2000. 19: 241247.
  • 51
    Perea, S. E., Reyes, O., Puchades, Y., Mendoza, O., Vispo, N. S., Torrens, I., Santos, A. et al., Antitumor effect of a novel proapoptotic peptide that impairs the phosphorylation by the protein kinase 2 (casein kinase 2). Cancer Res. 2004. 64: 71277129.
  • 52
    Majno, G. and Joris, I., Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol. 1995. 146: 315.
  • 53
    Levin, S., Bucci, T. J., Cohen, S. M., Fix, A. S., Hardisty, J. F., LeGrand, E. K., Maronpot, R. R. et al., The nomenclature of cell death: recommendations of an ad hoc Committee of the Society of Toxicologic Pathologists. Toxicol. Pathol. 1999. 27: 484490.