• 1
    Compston, A. and Coles, A., Multiple sclerosis. Lancet 2008. 372: 15021517.
  • 2
    Goverman, J., Autoimmune T-cell responses in the central nervous system. Nat. Rev. Immunol. 2009. 9: 393407.
  • 3
    Kasper, L. H. and Shoemaker, J., Multiple sclerosis immunology: the healthy immune system vs the MS immune system. Neurology 2010. 74 Suppl 1: S2S8.
  • 4
    Jager, A., Dardalhon, V., Sobel, R. A., Bettelli, E. and Kuchroo, V. K., Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J. Immunol. 2009. 183: 71697177.
  • 5
    O'Connor, R. A., Prendergast, C. T., Sabatos, C. A., Lau, C. W., Leech, M. D., Wraith, D. C. and Anderton, S. M., Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J. Immunol. 2008. 181: 37503754.
  • 6
    Bettelli, E., Korn, T., Oukka, M. and Kuchroo, V. K., Induction and effector functions of T(H)17 cells. Nature 2008. 453: 10511057.
  • 7
    Aharoni, R., Teitelbaum, D., Leitner, O., Meshorer, A., Sela, M. and Arnon, R., Specific Th2 cells accumulate in the central nervous system of mice protected against experimental autoimmune encephalomyelitis by copolymer 1. Proc. Natl. Acad. Sci. USA 2000. 97: 1147211477.
  • 8
    Weber, M. S., Prod'homme, T., Youssef, S., Dunn, S. E., Rundle, C. D., Lee, L., Patarroyo, J. C. et al., Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat. Med. 2007. 13: 935943.
  • 9
    Steinman, L., A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat. Med. 2007. 13: 139145.
  • 10
    Qin, X., Guo, B. T., Wan, B., Fang, L., Lu, L., Wu, L., Zang, Y. Q. et al., Regulation of Th1 and Th17 cell differentiation and amelioration of experimental autoimmune encephalomyelitis by natural product compound berberine. J. Immunol. 2010. 185: 18551863.
  • 11
    Dai, H., Ciric, B., Zhang, G. X. and Rostami, A., Interleukin-10 plays a crucial role in suppression of experimental autoimmune encephalomyelitis by Bowman-Birk inhibitor. J. Neuroimmunol. 2012. 245: 17.
  • 12
    Zhang, L., Yuan, S., Cheng, G. and Guo, B., Type I IFN promotes IL-10 production from T cells to suppress Th17 cells and Th17-associated autoimmune inflammation. PLoS One 2011. 6: e28432.
  • 13
    Bettelli, E., Nicholson, L. B. and Kuchroo, V. K., IL-10, a key effector regulatory cytokine in experimental autoimmune encephalomyelitis. J. Autoimmun. 2003. 20: 265267.
  • 14
    Coolen, M. and Bally-Cuif, L., MicroRNAs in brain development and physiology. Curr. Opin. Neurobiol. 2009. 19: 461470.
  • 15
    Lodish, H. F., Zhou, B., Liu, G. and Chen, C. Z., Micromanagement of the immune system by microRNAs. Nat. Rev. Immunol. 2008. 8: 120130.
  • 16
    Taganov, K. D., Boldin, M. P. and Baltimore, D., MicroRNAs and immunity: tiny players in a big field. Immunity 2007. 26: 133137.
  • 17
    Mattes, J., Collison, A. and Foster, P. S., Emerging role of microRNAs in disease pathogenesis and strategies for therapeutic modulation. Curr. Opin. Mol. Ther. 2008. 10: 150157.
  • 18
    Eacker, S. M., Dawson, T. M. and Dawson, V. L., Understanding microRNAs in neurodegeneration. Nat. Rev. Neurosci. 2009. 10: 837841.
  • 19
    Hebert, S. S. and De Strooper, B., Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci. 2009. 32: 199206.
  • 20
    Junker, A., Krumbholz, M., Eisele, S., Mohan, H., Augstein, F., Bittner, R., Lassmann, H. et al., MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 2009. 132: 33423352.
  • 21
    O'Connell, R. M., Kahn, D., Gibson, W. S., Round, J. L., Scholz, R. L., Chaudhuri, A. A., Kahn, M. E. et al., MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T-cell development. Immunity 2010. 33: 607619.
  • 22
    Du, C., Liu, C., Kang, J., Zhao, G., Ye, Z., Huang, S., Li, Z. et al., MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat. Immunol. 2009. 10: 12521259.
  • 23
    Guan, H., Nagarkatti, P. S. and Nagarkatti, M., CD44 reciprocally regulates the differentiation of encephalitogenic Th1/Th17 and Th2/regulatory T cells through epigenetic modulation involving DNA methylation of cytokine gene promoters, thereby controlling the development of experimental autoimmune encephalomyelitis. J. Immunol. 2011. 186: 69556964.
  • 24
    Guan, H., Nagarkatti, P. S. and Nagarkatti, M., Role of CD44 in the differentiation of Th1 and Th2 cells: CD44-deficiency enhances the development of Th2 effectors in response to sheep RBC and chicken ovalbumin. J. Immunol. 2009. 183: 172180.
  • 25
    Polikepahad, S., Knight, J. M., Naghavi, A. O., Oplt, T., Creighton, C. J., Shaw, C., Benham, A. L. et al., Proinflammatory role for let-7 microRNAs in experimental asthma. J. Biol. Chem. 2010. 285: 3013930149.
  • 26
    Ochoa-Reparaz, J., Rynda, A., Ascon, M. A., Yang, X., Kochetkova, I., Riccardi, C., Callis, G. et al., IL-13 production by Treg cells protects against experimental autoimmune encephalomyelitis independently of autoantigen. J. Immunol. 2008. 181: 954968.
  • 27
    Cash, E., Minty, A., Ferrara, P., Caput, D., Fradelizi, D. and Rott, O., Macrophage-inactivating IL-13 suppresses experimental autoimmune encephalomyelitis in rats. J. Immunol. 1994. 153: 42584267.
  • 28
    Young, D. A., Lowe, L. D., Booth, S. S., Whitters, M. J., Nicholson, L., Kuchroo, V. K. and Collins, M., IL-4, IL-10, IL-13, and TGF-beta from an altered peptide ligand-specific Th2 cell clone down-regulate adoptive transfer of experimental autoimmune encephalomyelitis. J. Immunol. 2000. 164: 35633572.
  • 29
    Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., Maller, B., Hayward, D. C. et al., Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000. 408: 8689.
  • 30
    Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R. et al., The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000. 403: 901906.
  • 31
    Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E. et al., RAS is regulated by the let-7 microRNA family. Cell 2005. 120: 635647.
  • 32
    Yun, J., Frankenberger, C. A., Kuo, W. L., Boelens, M. C., Eves, E. M., Cheng, N., Liang, H. et al., Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. Embo. J. 2011. 30: 45004514.
  • 33
    Boyerinas, B., Park, S. M., Shomron, N., Hedegaard, M. M., Vinther, J., Andersen, J. S., Feig, C. et al., Identification of let-7-regulated oncofetal genes. Cancer Res. 2008. 68: 25872591.
  • 34
    Dong, Q., Meng, P., Wang, T., Qin, W., Qin, W., Wang, F., Yuan, J. et al., MicroRNA let-7a inhibits proliferation of human prostate cancer cells in vitro and in vivo by targeting E2F2 and CCND2. PLoS One 2010. 5: e10147.
  • 35
    Peng, G., Yuan, Y., He, Q., Wu, W. and Luo, B. Y., MicroRNA let-7e regulates the expression of caspase-3 during apoptosis of PC12 cells following anoxia/reoxygenation injury. Brain Res. Bull. 2011. 86: 272276.
  • 36
    Androulidaki, A., Iliopoulos, D., Arranz, A., Doxaki, C., Schworer, S., Zacharioudaki, V., Margioris, A. N. et al., The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity 2009. 31: 220231.
  • 37
    Swaminathan, S., Suzuki, K., Seddiki, N., Kaplan, W., Cowley, M. J., Hood, C. L., Clancy, J. L. et al., Differential regulation of the let-7 family of microRNAs in CD4+ T cells alters IL-10 expression. J. Immunol. 2012. 188: 62386246.
  • 38
    Bettelli, E., Das, M. P., Howard, E. D., Weiner, H. L., Sobel, R. A. and Kuchroo, V. K., IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J. Immunol. 1998. 161: 32993306.
  • 39
    Saraiva, M. and O'Garra, A., The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 2010. 10: 170181.
  • 40
    Motomura, Y., Kitamura, H., Hijikata, A., Matsunaga, Y., Matsumoto, K., Inoue, H., Atarashi, K. et al., The transcription factor E4BP4 regulates the production of IL-10 and IL-13 in CD4+ T cells. Nat. Immunol. 2011.12: 450459.
  • 41
    Sharma, A., Kumar, M., Aich, J., Hariharan, M., Brahmachari, S. K., Agrawal, A. and Ghosh, B., Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a. Proc. Natl. Acad. Sci. USA 2009. 106: 57615766.
  • 42
    Thai, T. H., Calado, D. P., Casola, S., Ansel, K. M., Xiao, C., Xue, Y., Murphy, A. et al., Regulation of the germinal center response by microRNA-155. Science 2007. 316: 604608.
  • 43
    Rodriguez, A., Vigorito, E., Clare, S., Warren, M. V., Couttet, P., Soond, D. R., van Dongen, S. et al., Requirement of bic/microRNA-155 for normal immune function. Science 2007. 316: 608611.
  • 44
    Chen, D., McKallip, R. J., Zeytun, A., Do, Y., Lombard, C., Robertson, J. L., Mak, T. W. et al., CD44-deficient mice exhibit enhanced hepatitis after concanavalin A injection: evidence for involvement of CD44 in activation-induced cell death. J. Immunol. 2001. 166: 58895897.
  • 45
    McKallip, R. J., Fisher, M., Do, Y., Szakal, A. K., Gunthert, U., Nagarkatti, P. S. and Nagarkatti, M., Targeted deletion of CD44v7 exon leads to decreased endothelial cell injury but not tumor cell killing mediated by interleukin-2-activated cytolytic lymphocytes. J. Biol. Chem. 2003. 278: 4381843830.
  • 46
    Fan, D., Qiu, S., Overton, C. D., Yancey, P. G., Swift, L. L., Jerome, W. G., Linton, M. F. et al. , Impaired secretion of apolipoprotein E2 from macrophages. J. Biol. Chem. 2007. 282: 1374613753.