SEARCH

SEARCH BY CITATION

References

  • 1
    Cooper, A. M., Dalton, D. K., Stewart, T. A., Griffin, J. P., Russell, D. G. and Orme, I. M., Disseminated tuberculosis in interferon gamma gene-disrupted mice. J. Exp. Med. 1993. 178: 22432247.
  • 2
    Flynn, J. L., Chan, J., Triebold, K. J., Dalton, D. K., Stewart, T. A. and Bloom, B. R., An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 1993. 178: 22492254.
  • 3
    Feng, C. G., Kaviratne, M., Rothfuchs, A. G., Cheever, A., Hieny, S., Young, H. A., Wynn, T. A. et al., NK cell-derived IFN-gamma differentially regulates innate resistance and neutrophil response in T cell-deficient hosts infected with Mycobacterium tuberculosis. J. Immunol. 2006. 177: 70867093.
  • 4
    Saxena, R. K., Weissman, D., Simpson, J. and Lewis, D. M., Murine model of BCG lung infection: dynamics of lymphocyte subpopulations in lung interstitium and tracheal lymph nodes. J. Biosci. 2002. 27: 143153.
  • 5
    Vankayalapati, R., Garg, A., Porgador, A., Griffith, D. E., Klucar, P., Safi, H., Girard, W. M. et al., Role of NK cell-activating receptors and their ligands in the lysis of mononuclear phagocytes infected with an intracellular bacterium. J. Immunol. 2005. 175: 46114617.
  • 6
    Mailliard, R. B., Son, Y. I., Redlinger, R., Coates, P. T., Giermasz, A., Morel, P. A., Storkus, W. J. et al., Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function. J. Immunol. 2003. 171: 23662373.
  • 7
    Martin-Fontecha, A., Thomsen, L. L., Brett, S., Gerard, C., Lipp, M., Lanzavecchia, A. and Sallusto, F., Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat. Immunol. 2004. 5: 12601265.
  • 8
    Morandi, B., Mortara, L., Carrega, P., Cantoni, C., Costa, G., Accolla, R. S., Mingari, M. C. et al., NK cells provide helper signal for CD8+ T cells by inducing the expression of membrane-bound IL-15 on DCs. Int. Immunol. 2009. 21: 599606.
  • 9
    Lande, R., Giacomini, E., Grassi, T., Remoli, M. E., Iona, E., Miettinen, M., Julkunen, I. et al., IFN-alpha beta released by Mycobacterium tuberculosis-infected human dendritic cells induces the expression of CXCL10: selective recruitment of NK and activated T cells. J. Immunol. 2003. 170: 11741182.
  • 10
    Van Elssen, C. H., Vanderlocht, J., Frings, P. W., Senden-Gijsbers, B. L., Schnijderberg, M. C., van Gelder, M., Meek, B. et al., Klebsiella pneumoniae-triggered DC recruit human NK cells in a CCR5-dependent manner leading to increased CCL19-responsiveness and activation of NK cells. Eur. J. Immunol. 2010. 40: 31383149.
  • 11
    Gerosa, F., Baldani-Guerra, B., Nisii, C., Marchesini, V., Carra, G. and Trinchieri, G., Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med. 2002. 195: 327333.
  • 12
    Ferlazzo, G., Morandi, B., D'Agostino, A., Meazza, R., Melioli, G., Moretta, A. and Moretta, L., The interaction between NK cells and dendritic cells in bacterial infections results in rapid induction of NK cell activation and in the lysis of uninfected dendritic cells. Eur. J. Immunol. 2003. 33: 306313.
  • 13
    Hickman, S. P., Chan, J. and Salgame, P., Mycobacterium tuberculosis induces differential cytokine production from dendritic cells and macrophages with divergent effects on naive T cell polarization. J. Immunol. 2002. 168: 46364642.
  • 14
    Borg, C., Jalil, A., Laderach, D., Maruyama, K., Wakasugi, H., Charrier, S., Ryffel, B. et al., NK cell activation by dendritic cells (DCs) requires the formation of a synapse leading to IL-12 polarization in DCs. Blood 2004. 104: 32673275.
  • 15
    Mailliard, R. B., Alber, S. M., Shen, H., Watkins, S. C., Kirkwood, J. M., Herberman, R. B. and Kalinski, P., IL-18-induced CD83+CCR7+ NK helper cells. J. Exp. Med. 2005. 202: 941953.
  • 16
    Cooper, M. A., Fehniger, T. A., Turner, S. C., Chen, K. S., Ghaheri, B. A., Ghayur, T., Carson, W. E. et al., Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 2001. 97: 31463151.
  • 17
    Chiossone, L., Chaix, J., Fuseri, N., Roth, C., Vivier, E. and Walzer, T., Maturation of mouse NK cells is a 4-stage developmental program. Blood 2009. 113: 54885496.
  • 18
    Boysen, P., Olsen, I., Berg, I., Kulberg, S., Johansen, G. M. and Storset, A. K., Bovine CD2-/NKp46 +cells are fully functional natural killer cells with a high activation status. BMC Immunol. 2006. 7: 10.
  • 19
    Storset, A. K., Kulberg, S., Berg, I., Boysen, P., Hope, J. C. and Dissen, E., NKp46 defines a subset of bovine leukocytes with natural killer cell characteristics. Eur. J. Immunol. 2004. 34: 669676.
  • 20
    Hayakawa, Y. and Smyth, M. J., CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J. Immunol. 2006. 176: 15171524.
  • 21
    Boysen, P., Gunnes, G., Pende, D., Valheim, M. and Storset, A. K., Natural killer cells in lymph nodes of healthy calves express CD16 and show both cytotoxic and cytokine-producing properties. Dev. Comp. Immunol. 2008. 32: 773783.
  • 22
    Denis, M., Keen, D. L., Parlane, N. A., Storset, A. K. and Buddle, B. M., Bovine natural killer cells restrict the replication of Mycobacterium bovis in bovine macrophages and enhance IL-12 release by infected macrophages. Tuberculosis (Edinb) 2007. 87: 5362.
  • 23
    Hope, J. C., Sopp, P. and Howard, C. J., NK-like CD8(+) cells in immunologically naive neonatal calves that respond to dendritic cells infected with Mycobacterium bovis BCG. J. Leukoc. Biol. 2002. 71: 184194.
  • 24
    Widdison, S., Siddiqui, N., Easton, V., Lawrence, F., Ashley, G., Werling, D., Watson, M. et al., The bovine chemokine receptors and their mRNA abundance in mononuclear phagocytes. BMC Genom. 2010. 11: 439.
  • 25
    Widdison, S., Watson, M. and Coffey, T. J., Correlation between lymph node pathology and chemokine expression during bovine tuberculosis. Tuberculosis (Edinb) 2009. 89: 417422.
  • 26
    Widdison, S., Watson, M., Piercy, J., Howard, C. and Coffey, T. J., Granulocyte chemotactic properties of M. tuberculosis versus M. bovis-infected bovine alveolar macrophages. Mol. Immunol. 2008. 45: 740749.
  • 27
    Hope, J. C., Kwong, L. S., Entrican, G., Wattegedera, S., Vordermeier, H. M., Sopp, P. and Howard, C. J., Development of detection methods for ruminant interleukin (IL)-12. J. Immunol. Methods. 2002. 266: 117126.
  • 28
    Hope, J. C., Thom, M. L., McCormick, P. A. and Howard, C. J., Interaction of antigen presenting cells with mycobacteria. Vet. Immunol. Immunopathol. 2004. 100: 187195.
  • 29
    Waters, W. R., Palmer, M. V., Thacker, T. C., Davis, W. C., Sreevatsan, S., Coussens, P., Meade, K. G. et al., Tuberculosis immunity: opportunities from studies with cattle. Clin. Dev. Immunol. 2011. doi:10.1155/2011/768542.
  • 30
    Kang, S. J., Liang, H. E., Reizis, B. and Locksley, R. M., Regulation of hierarchical clustering and activation of innate immune cells by dendritic cells. Immunity 2008. 29: 819833.
  • 31
    Cella, M., Fuchs, A., Vermi, W., Facchetti, F., Otero, K., Lennerz, J. K., Doherty, J. M. et al., A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 2009. 457: 722725.
  • 32
    Vitale, M., Della Chiesa, M., Carlomagno, S., Romagnani, C., Thiel, A., Moretta, L. and Moretta, A., The small subset of CD56brightCD16- natural killer cells is selectively responsible for both cell proliferation and interferon-gamma production upon interaction with dendritic cells. Eur. J. Immunol. 2004. 34: 17151722.
  • 33
    Horowitz, A., Behrens, R. H., Okell, L., Fooks, A. R. and Riley, E. M., NK cells as effectors of acquired immune responses: effector CD4+ T cell-dependent activation of NK cells following vaccination. J. Immunol. 2010. 185: 28082818.
  • 34
    Evans, J. H., Horowitz, A., Mehrabi, M., Wise, E. L., Pease, J. E., Riley, E. M. and Davis, D. M., A distinct subset of human NK cells expressing HLA-DR expand in response to IL-2 and can aid immune responses to BCG. Eur. J. Immunol. 2011. 41: 19241933.
  • 35
    Vankayalapati, R., Klucar, P., Wizel, B., Weis, S. E., Samten, B., Safi, H., Shams, H. et al., NK cells regulate CD8+ T cell effector function in response to an intracellular pathogen. J. Immunol. 2004. 172: 130137.
  • 36
    Jiao, L., Gao, X., Joyee, A. G., Zhao, L., Qiu, H., Yang, M., Fan, Y. et al., NK cells promote type 1 T cell immunity through modulating the function of dendritic cells during intracellular bacterial infection. J. Immunol. 2011. 187: 40111.
  • 37
    Walzer, T., Dalod, M., Robbins, S. H., Zitvogel, L. and Vivier, E., Natural-killer cells and dendritic cells: “l'union fait la force”. Blood 2005. 106: 22522258.
  • 38
    Morandi, B., Mortara, L., Chiossone, L., Accolla, R. S., Mingari, M. C., Moretta, L., Moretta, A. et al., Dendritic cell editing by activated natural killer cells results in a more protective cancer-specific immune response. PLoS One 2012. 7: e39170.
  • 39
    Bastos, R. G., Johnson, W. C., Mwangi, W., Brown, W. C. and Goff, W. L., Bovine NK cells acquire cytotoxic activity and produce IFN-gamma after stimulation by Mycobacterium bovis BCG- or Babesia bovis-exposed splenic dendritic cells. Vet. Immunol. Immunopathol. 2008. 124: 302312.
  • 40
    Holmes, T. D., El-Sherbiny, Y. M., Davison, A., Clough, S. L., Blair, G. E. and Cook, G. P., A human NK cell activation/inhibition threshold allows small changes in the target cell surface phenotype to dramatically alter susceptibility to NK cells. J. Immunol. 2011. 186: 15381545.
  • 41
    Dobromylskyj, M. J., Connelley, T., Hammond, J. A. and Ellis, S. A., Cattle Ly49 is polymorphic. Immunogenetics 2009. 61: 789795.
  • 42
    Storset, A. K., Slettedal, I. O., Williams, J. L., Law, A. and Dissen, E., Natural killer cell receptors in cattle: a bovine killer cell immunoglobulin-like receptor multigene family contains members with divergent signaling motifs. Eur. J. Immunol. 2003. 33: 980990.
  • 43
    Altfeld, M., Fadda, L., Frleta, D. and Bhardwaj, N., DCs and NK cells: critical effectors in the immune response to HIV-1. Nat. Rev. Immunol. 2011. 11: 176186.
  • 44
    Shimizu, K. and Fujii, S., DC therapy induces long-term NK reactivity to tumors via host DC. Eur. J. Immunol. 2009. 39: 457468.
  • 45
    Howard, C. J. and Naessens, J., Summary of workshop findings for cattle (tables 1 and 2). Vet. Immunol. Immunopathol. 1993. 39: 2547.
  • 46
    Hope, J. C., Kwong, L. S., Sopp, P., Collins, R. A. and Howard, C. J., Dendritic cells induce CD4+ and CD8+ T-cell responses to Mycobacterium bovis and M. avium antigens in Bacille Calmette Guerin vaccinated and nonvaccinated cattle. Scand. J. Immunol. 2000. 52: 285291.
    Direct Link:
  • 47
    Price, S. J. and Hope, J. C., Enhanced secretion of interferon-gamma by bovine gammadelta T cells induced by coculture with Mycobacterium bovis-infected dendritic cells: evidence for reciprocal activating signals. Immunology 2008. 126: 201208.
  • 48
    Hogg, A. E., Worth, A., Beverley, P., Howard, C. J. and Villarreal-Ramos, B., The antigen-specific memory CD8+ T-cell response induced by BCG in cattle resides in the CD8+gamma/deltaTCR-CD45RO +T-cell population. Vaccine 2009. 27: 270279.