• 1
    Sartor, R. B., Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis. Nat. Clin. Pract. Gastroenterol. Hepatol. 2006. 3: 390407.
  • 2
    Schreiber, S., Monocytes or T cells in Crohn's disease: does IL-16 allow both to play at that game? Gut 2001. 49: 747748.
  • 3
    Boirivant, M., Marini, M., Di Felice, G., Pronio, A. M., Montesani, C., Tersigni, R. and Strober, W., Lamina propria T cells in Crohn's disease and other gastrointestinal inflammation show defective CD2 pathway-induced apoptosis. Gastroenterology 1999. 116: 557565.
  • 4
    Strober, W., Fuss, I. J. and Blumberg, R. S., The immunology of mucosal models of inflammation. Annu. Rev. Immunol. 2002. 20: 495549.
  • 5
    Okamoto, S., Watanabe, M., Yamazaki, M., Yajima, T., Hayashi, T., Ishii, H., Mukai, M. et al., A synthetic mimetic of CD4 is able to suppress disease in a rodent model of immune colitis. Eur. J. Immunol. 1999. 29: 355366.
  • 6
    Kim, T. I., Lee, Y. C., Lee, K. H., Han, J. H., Chon, C. Y., Moon, Y. M., Kang, J. K. et al., Effects of nonsteroidal anti-inflammatory drugs on Helicobacter pylori-infected gastric mucosae of mice: apoptosis, cell proliferation, and inflammatory activity. Infect. Immun. 2001. 69: 50565063.
  • 7
    Wu, C. Y., Wu, M. S., Kuo, K. N., Wang, C. B., Chen, Y. J. and Lin, J. T., Effective reduction of gastric cancer risk with regular use of nonsteroidal anti-inflammatory drugs in Helicobacter pylori-infected patients. J. Clin. Oncol. 2010. 28: 29522957.
  • 8
    Sakaguchi, S., Naturally arising CD4+ Treg cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 2004. 22: 531562.
  • 9
    Wan, Y. Y. and Flavell, R. A., TGF-beta and regulatory T-cell in immunity and autoimmunity. J. Clin. Immunol. 2008. 28: 647659.
  • 10
    Powrie, F., Leach, M. W., Mauze, S., Caddle, L. B. and Coffman, R. L., Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C.B-17 scid mice. Int. Immunol. 1993. 5: 14611471.
  • 11
    Mottet, C., Uhlig, H. H. and Powrie, F., Cutting edge: cure of colitis by CD4+CD25+ regulatory T-cells. J. Immunol. 2003. 170: 39393943.
  • 12
    Poussier, P., Edouard, P., Lee, C., Binnie, M. and Julius, M., Thymus-independent development and negative selection of T cells expressing T-cell receptor alpha/beta in the intestinal epithelium: evidence for distinct circulation patterns of gut- and thymus-derived T lymphocytes. J. Exp. Med. 1992. 176: 187199.
  • 13
    Menager-Marcq, I., Pomie, C., Romagnoli, P., and van Meerwijk, J. P., CD8+CD28- Treg lymphocyte prevent experimental inflammatory bowel disease in mice. Gastroenterology 2006. 131: 17751785.
  • 14
    Das, G., Augustine, M. M., Das, J., Bottomly, K., Ray, P. and Ray, A., An important regulatory role for CD4+CD8 alpha alpha T cells in the intestinal epithelial layer in the prevention of inflammatory bowel disease. Proc. Natl. Acad. Sic. USA 2003. 100: 53245329.
  • 15
    Lu, L., Kim, H. J., Werneck, M. B. and Cantor, H., Regulation of CD8+ regulatory T-cells: interruption of the NKG2A-Qa-1 interaction allows robust suppressive activity and resolution of autoimmune disease. Proc. Natl. Acad. Sci. USA 2008. 105: 1942019425.
  • 16
    Jiang, H., Kashleva, H., Xu, L. X., Forman, J., Flaherty, L., Pernis, B., Braunstein, N. S. et al., T-cell vaccination induces T-cell receptor Vbeta-specific Qa-1-restricted regulatory CD8(+) T-cells. Proc. Natl. Acad. Sic. USA 1998. 95: 45334537.
  • 17
    Wu, Y., Zheng, Z., Jiang, Y., Chess, L. and Jiang, H., The specificity of T-cell regulation that enables self-nonself discrimination in the periphery. Proc. Natl. Acad. Sci. USA 2009. 106: 534539.
  • 18
    Aharoni, R., Kayhan, B., Brenner, O., Domev, H., Labunskay, G. and Arnon, R., Immunomodulatory therapeutic effect of glatiramer acetate on several murine models of inflammatory bowel disease. J. Pharmacol. Exp. Ther. 2006. 318: 6878.
  • 19
    Schrempf, W. and Ziemssen, T., Glatiramer acetate: mechanisms of action in multiple sclerosis. Autoimmun. Rev. 2007. 6: 469475.
  • 20
    Dressel, A., Vogelgesang, A., Brinkmeier, H., Mader, M. and Weber, F., Glatiramer acetate-specific human CD8(+) T-cells: increased IL-4 production in multiple sclerosis is reduced by glatiramer acetate treatment. J. Neuroimmunol. 2006. 181: 133140.
  • 21
    Tennakoon, D. K., Mehta, R. S., Ortega, S. B., Bhoj, V., Racke, M. K. and Karandikar, N. J., Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis. J. Immunol. 2006. 176: 71197129.
  • 22
    Hu, D., Ikizawa, K., Lu, L., Sanchirico, M. E., Shinohara, M. L. and Cantor, H., Analysis of regulatory CD8 T cells in Qa-1-deficient mice. Nat. Immunol. 2004. 5: 516523.
  • 23
    Holmen, N., Lundgren, A., Lundin, S., Bergin, A. M., Rudin, A., Sjovall, H. and Ohman, L., Functional CD4+CD25high Treg cells are enriched in the colonic mucosa of patients with active ulcerative colitis and increase with disease activity. Inflamm. Bowel Dis. 2006. 12: 447456.
  • 24
    Brimnes, J., Allez, M., Dotan, I., Shao, L., Nakazawa, A. and Mayer, L., Defects in CD8+ Treg cells in the lamina propria of patients with inflammatory bowel disease. J. Immunol. 2005. 174: 58145822.
  • 25
    Perse, M. and Cerar, A., Dextran sodium sulphate colitis mouse model: traps and tricks. J. Biomed. Biotechnol. 2012. 2012: 718617.
  • 26
    Axelsson, L. G., Landstrom, E., Goldschmidt, T. J., Gronberg, A. and Bylund-Fellenius, A. C., Dextran sulfate sodium (DSS) induced experimental colitis in immunodeficient mice: effects in CD4(+) -cell depleted, athymic and NK-cell depleted SCID mice. Inflamm. Res. 1996. 45: 181191.
  • 27
    Stevceva, L., Pavli, P., Husband, A. J. and Doe, W. F., The inflammatory infiltrate in the acute stage of the dextran sulphate sodium induced colitis: B cell response differs depending on the percentage of DSS used to induce it. BMC Clin. Pathol. 2001. 1: 3.
  • 28
    Dieleman, L. A., Ridwan, B. U., Tennyson, G. S., Beagley, K. W., Bucy, R. P. and Elson, C. O., Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology 1994. 107: 16431652.
  • 29
    Shintani, N., Nakajima, T., Okamoto, T., Kondo, T., Nakamura, N. and Mayumi, T., Involvement of CD4+ T cells in the development of dextran sulfate sodium-induced experimental colitis and suppressive effect of IgG on their action. Gen. Pharmacol. 1998. 31: 477481.
  • 30
    Kim, T. W., Seo, J. N., Suh, Y. H., Park, H. J., Kim, J. H., Kim, J. Y. and Oh, K. I., Involvement of lymphocytes in dextran sulfate sodium-induced experimental colitis. World J. Gastroenterol. 2006. 12: 302305.
  • 31
    Yanaba, K., Asano, Y., Tada, Y., Sugaya, M., Kadono, T. and Sato, S., Proteasome inhibitor bortezomib ameliorates intestinal injury in mice. PLoS One 2012. 7: e34587.
  • 32
    Wirtz, S., Neufert, C., Weigmann, B. and Neurath, M. F., Chemically induced mouse models of intestinal inflammation. Nat. Protoc. 2007. 2: 541546.
  • 33
    Uematsu, S., Fujimoto, K., Jang, M. H., Yang, B. G., Jung, Y. J., Nishiyama, M. and Sato, S. et al., Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat. Immunol. 2008. 9: 769776.
  • 34
    Rudolphi, A., Bonhagen, K. and Reimann, J., Polyclonal expansion of adoptively transferred CD4 +alpha beta T cells in the colonic lamina propria of scid mice with colitis. 1996 Eur. J. Immunol. 26: 11561163.