SEARCH

SEARCH BY CITATION

References

  • 1
    Blasius, A. L., Giurisato, E., Cella, M., Schreiber, R. D., Shaw, A. S. and Colonna, M., Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation. J. Immunol. 2006. 177: 32603265.
  • 2
    Swiecki, M., Scheaffer, S. M., Allaire, M., Fremont, D. H., Colonna, M. and Brett, T. J., Structural and biophysical analysis of BST-2/tetherin ectodomains reveals an evolutionary conserved design to inhibit virus release. J. Biol. Chem. 2011. 286: 29872997.
  • 3
    Cao, W., Bover, L., Cho, M., Wen, X., Hanabuchi, S., Bao, M., Rosen, D. B. et al., Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction. J. Exp. Med. 2009. 206: 16031614.
  • 4
    Neil, S. J., Zang, T. and Bieniasz, P. D., Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 2008. 451: 425430.
  • 5
    Evans, D. T., Serra-Moreno, R., Singh, R. K. and Guatelli, J. C., BST-2/tetherin: a new component of the innate immune response to enveloped viruses. Trends Microbiol. 2010. 18: 388396.
  • 6
    Villadangos, J. A. and Young, L., Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 2008. 29: 352361.
  • 7
    Kool, M., Geurtsvankessel, C., Muskens, F., Madeira, F. B., van Nimwegen, M., Kuipers, H., Thielemans, K. et al., Facilitated antigen uptake and timed exposure to TLR ligands dictate the antigen-presenting potential of plasmacytoid DCs. J. Leukoc. Biol. 2011. 90: 11771190.
  • 8
    Sapoznikov, A., Fischer, J. A., Zaft, T., Krauthgamer, R., Dzionek, A. and Jung, S., Organ-dependent in vivo priming of naive CD4+, but not CD8+, T cells by plasmacytoid dendritic cells. J. Exp. Med. 2007. 204: 19231933.
  • 9
    Loschko, J., Schlitzer, A., Dudziak, D., Drexler, I., Sandholzer, N., Bourquin, C., Reindl, W. et al., Antigen delivery to plasmacytoid dendritic cells via BST2 induces protective T-cell-mediated immunity. J. Immunol. 2011. 186: 67186725.
  • 10
    Loschko, J., Heink, S., Hackl, D., Dudziak, D., Reindl, W., Korn, T. and Krug, A. B., Antigen targeting to plasmacytoid dendritic cells via Siglec-H inhibits Th cell-dependent autoimmunity. J. Immunol. 2011. 187: 63466356.
  • 11
    Swiecki, M., Wang, Y., Gilfillan, S., Lenschow, D. J. and Colonna, M., Cutting edge: paradoxical roles of BST2/tetherin in promoting type I IFN response and viral infection. J. Immunol. 2012. 188: 24882492.
  • 12
    Caminschi, I., Lahoud, M. H. and Shortman, K., Enhancing immune responses by targeting antigen to DC. Eur. J. Immunol. 2009. 39: 931938.
  • 13
    Chiriva-Internati, M., Liu, Y., Weidanz, J. A., Grizzi, F., You, H., Zhou, W., Bumm, K. et al., Testing recombinant adeno-associated virus-gene loading of dendritic cells for generating potent cytotoxic T lymphocytes against a prototype self-antigen, multiple myeloma HM1.24. Blood 2003. 102: 31003107.
  • 14
    Jalili, A., Ozaki, S., Hara, T., Shibata, H., Hashimoto, T., Abe, M., Nishioka, Y. et al., Induction of HM1.24 peptide-specific cytotoxic T lymphocytes by using peripheral-blood stem-cell harvests in patients with multiple myeloma. Blood 2005. 106: 35383545.
  • 15
    Erikson, E., Adam, T., Schmidt, S., Lehmann-Koch, J., Over, B., Goffinet, C., Harter, C. et al., In vivo expression profile of the antiviral restriction factor and tumor-targeting antigen CD317/BST-2/HM1.24/tetherin in humans. Proc. Natl. Acad. Sci. USA 2011. 108: 1368813693.
  • 16
    Dudziak, D., Kamphorst, A. O., Heidkamp, G. F., Buchholz, V. R., Trumpfheller, C., Yamazaki, S., Cheong, C. et al., Differential antigen processing by dendritic cell subsets in vivo. Science 2007. 315: 107111.
  • 17
    Zhang, J., Raper, A., Sugita, N., Hingorani, R., Salio, M., Palmowski, M. J., Cerundolo, V. et al., Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors. Blood 2006. 107: 36003608.
  • 18
    Caminschi, I., Proietto, A. I., Ahmet, F., Kitsoulis, S., Shin Teh, J., Lo, J. C., Rizzitelli, A. et al., The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 2008. 112: 32643273.
  • 19
    Lahoud, M. H., Proietto, A. I., Ahmet, F., Kitsoulis, S., Eidsmo, L., Wu, L., Sathe, P. et al., The C-type lectin Clec12A present on mouse and human dendritic cells can serve as a target for antigen delivery and enhancement of antibody responses. J. Immunol. 2009. 182: 75877594.
  • 20
    Liberatore, R. A. and Bieniasz, P. D., Tetherin is a key effector of the antiretroviral activity of type I interferon in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2011. 108: 1809718101.
  • 21
    Kawai, S., Azuma, Y., Fujii, E., Furugaki, K., Ozaki, S., Matsumoto, T., Kosaka, M. et al., Interferon-alpha enhances CD317 expression and the antitumor activity of anti-CD317 monoclonal antibody in renal cell carcinoma xenograft models. Cancer Sci. 2008. 99: 24612466.
  • 22
    Bego, M. G., Mercier, J. and Cohen, E. A., Virus-activated interferon regulatory factor 7 upregulates expression of the interferon-regulated BST2 gene independently of interferon signaling. J. Virol. 2012. 86: 35133527.
  • 23
    Ohtomo, T., Sugamata, Y., Ozaki, Y., Ono, K., Yoshimura, Y., Kawai, S., Koishihara, Y. et al., Molecular cloning and characterization of a surface antigen preferentially overexpressed on multiple myeloma cells. Biochem. Biophys. Res. Commun. 1999. 258: 583591.
  • 24
    den Haan, J. M., Lehar, S. M. and Bevan, M. J., CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 2000. 192: 16851696.
  • 25
    Schnorrer, P., Behrens, G. M., Wilson, N. S., Pooley, J. L., Smith, C. M., El-Sukkari, D., Davey, G. et al., The dominant role of CD8+ dendritic cells in cross-presentation is not dictated by antigen capture. Proc. Natl. Acad. Sci. USA 2006. 103: 1072910734.
  • 26
    Wilson, N. S., Behrens, G. M., Lundie, R. J., Smith, C. M., Waithman, J., Young, L., Forehan, S. P. et al., Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity. Nat. Immunol. 2006. 7: 165172.
  • 27
    Platt, C. D., Ma, J. K., Chalouni, C., Ebersold, M., Bou-Reslan, H., Carano, R. A., Mellman, I. et al., Mature dendritic cells use endocytic receptors to capture and present antigens. Proc. Natl. Acad. Sci. USA 2010. 107: 42874292.
  • 28
    Kamphorst, A. O., Guermonprez, P., Dudziak, D. and Nussenzweig, M. C., Route of antigen uptake differentially impacts presentation by dendritic cells and activated monocytes. J. Immunol. 2010. 185: 34263435.
  • 29
    Young, L. J., Wilson, N. S., Schnorrer, P., Proietto, A., ten Broeke, T., Matsuki, Y., Mount, A. M. et al., Differential MHC class II synthesis and ubiquitination confers distinct antigen-presenting properties on conventional and plasmacytoid dendritic cells. Nat. Immunol. 2008. 9: 12441252.
  • 30
    Cheong, C., Choi, J. H., Vitale, L., He, L. Z., Trumpfheller, C., Bozzacco, L., Do, Y. et al., Improved cellular and humoral immune responses in vivo following targeting of HIV Gag to dendritic cells within human anti-human DEC205 monoclonal antibody. Blood 2010. 116: 38283838.
  • 31
    Clarke, S. M. R., Barnden, M., Kurts, C., Carbone, F. R., Miller, J. F. A. P. and Heath, W. R., Characterisation of the OVA-specific TCR transgenic line OT-I: MHC elements for positive and negative selection. Immunol. Cell Biol. 2000.78: 110117.
  • 32
    Barnden, M. J., Allison, J., Heath, W. R. and Carbone, F. R., Defective TCR expression in transgenic mice constructed using cDNA- based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 1998. 76: 3440.
  • 33
    Harman, A. N., Wilkinson, J., Bye, C. R., Bosnjak, L., Stern, J. L., Nicholle, M., Lai, J. et al., HIV induces maturation of monocyte-derived dendritic cells and Langerhans cells. J. Immunol. 2006. 177: 71037113.
  • 34
    Turville, S. G., Santos, J. J., Frank, I., Cameron, P. U., Wilkinson, J., Miranda-Saksena, M., Dable, J. et al., Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 2004. 103: 21702179.
  • 35
    Cameron, P. U., Handley, A. J., Baylis, D. C., Solomon, A. E., Bernard, N., Purcell, D. F. and Lewin, S. R., Preferential infection of dendritic cells during human immunodeficiency virus type 1 infection of blood leukocytes. J. Virol. 2007. 81: 22972306.
  • 36
    McLellan, A. D., Heiser, A., Sorg, R. V., Fearnley, D. B. and Hart, D. N., Dermal dendritic cells associated with T lymphocytes in normal human skin display an activated phenotype. J. Invest. Dermatol. 1998. 111: 841849.
  • 37
    de Jong, M. A., de Witte, L., Santegoets, S. J., Fluitsma, D., Taylor, M. E., de Gruijl, T. D. and Geijtenbeek, T. B., Mutz-3-derived Langerhans cells are a model to study HIV-1 transmission and potential inhibitors. J. Leukoc. Biol. 2010. 87: 637643.
  • 38
    Saleh, S., Solomon, A., Wightman, F., Xhilaga, M., Cameron, P. U. and Lewin, S. R., CCR7 ligands CCL19 and CCL21 increase permissiveness of resting memory CD4+ T cells to HIV-1 infection: a novel model of HIV-1 latency. Blood 2007. 110: 41614164.
  • 39
    Harman, A. N., Kraus, M., Bye, C. R., Byth, K., Turville, S. G., Tang, O., Mercier, S. K. et al., HIV-1-infected dendritic cells show 2 phases of gene expression changes, with lysosomal enzyme activity decreased during the second phase. Blood 2009. 114: 8594.