• Cancer;
  • Treg cells;
  • Tumor immunology;
  • Vaccination

Cancer vaccines have yet to yield clinical benefit, despite the measurable induction of humoral and cellular immune responses. As immunosuppression by CD4+CD25+ regulatory T (Treg) cells has been linked to the failure of cancer immunotherapy, blocking suppression is therefore critical for successful clinical strategies. Here, we addressed whether a lyophilized preparation of Streptococcus pyogenes (OK-432), which stimulates Toll-like receptors, could overcome Treg-cell suppression of CD4+ T-cell responses in vitro and in vivo. OK-432 significantly enhanced in vitro proliferation of CD4+ effector T cells by blocking Treg-cell suppression and this blocking effect depended on IL-12 derived from antigen-presenting cells. Direct administration of OK-432 into tumor-associated exudate fluids resulted in a reduction of the frequency and suppressive function of CD4+CD25+Foxp3+ Treg cells. Furthermore, when OK-432 was used as an adjuvant of vaccination with HER2 and NY-ESO-1 for esophageal cancer patients, NY-ESO-1–specific CD4+ T-cell precursors were activated, and NY-ESO-1–specific CD4+ T cells were detected within the effector/memory T-cell population. CD4+ T-cell clones from these patients had high-affinity TCRs and recognized naturally processed NY-ESO-1 protein presented by dendritic cells. OK-432 therefore inhibits Treg-cell function and contributes to the activation of high-avidity tumor antigen-specific naive T-cell precursors.