• 1
    Getahun, H., Gunneberg, C., Granich, R. and Nunn, P., HIV infection-associated tuberculosis: the epidemiology and the response. Clin. Infect. Dis. 2010. 50 (Suppl 3): 201207.
  • 2
    Sonnenberg, P., Glynn, J. R., Fielding, K., Murray, J., Godfrey-Faussett, P. and Shearer, S., How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. J. Infect. Dis. 2005. 191: 150158.
  • 3
    Kalsdorf, B., Scriba, T. J., Wood, K., Day, C. L., Dheda, K., Dawson, R., Hanekom, W. A. et al., HIV-1 infection impairs the bronchoalveolar T-cell response to mycobacteria. Am. J. Respir. Crit. Care Med. 2009. 180: 12621270.
  • 4
    Manas, E., Pulido, F., Pena, J. M., Rubio, R., Gonzalez-Garcia, J., Costa, R., Perez-Rodriguez, E. et al., Impact of tuberculosis on the course of HIV-infected patients with a high initial CD4 lymphocyte count. Int. J. Tuberc. Lung Dis. 2004. 8: 451457.
  • 5
    Knox, K. S., Vinton, C., Hage, C. A., Kohli, L. M., Twigg III, H. L., Klatt, N. R., Zwickl, B. et al., Reconstitution of CD4 T cells in bronchoalveolar lavage fluid after initiation of highly active antiretroviral therapy. J Virol. 2010. 84: 90109018.
  • 6
    Barry, S. M., Johnson, M. A. and Janossy, G., Increased proportions of activated and proliferating memory CD8 +T lymphocytes in both blood and lung are associated with blood HIV viral load. J. Acquir. Immune Defic. Syndr. 2003. 34: 351357.
  • 7
    Hazenberg, M. D., Otto, S. A., van Benthem, B. H., Roos M. T., Coutinho, R. A., Lange, J. M., Hamann, D. et al., Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS 2003. 17: 18811888.
  • 8
    Raju, B., Tung, C. F., Cheng, D., Yousefzadeh, N., Condos, R., Rom, W. N. and Tse, D. B., In situ activation of helper T cells in the lung. Infect. Immun. 2001. 69: 47904798.
  • 9
    Santucci, M. B., Bocchino, M., Garg, S. K., Marruchella, A., Colizzi, V., Saltini, C. and Fraziano, M., Expansion of CCR5+ CD4+ T-lymphocytes in the course of active pulmonary tuberculosis. Eur. Respir. J. 2004. 24: 638643.
  • 10
    Morris, L., Cilliers, T., Bredell, H., Phoswa, M. and Martin, D. J., CCR5 is the major coreceptor used by HIV-1 subtype C isolates from patients with active tuberculosis. AIDS Res. Hum. Retroviruses. 2001. 17: 697701.
  • 11
    Gorry, P. R. and Ancuta, P., Coreceptors and HIV-1 pathogenesis. Curr. HI/AIDS Rep. 2011. 8: 4553.
  • 12
    Fukada, K., Sobao, Y., Tomiyama, H., Oka, S. and Takiguchi, M., Functional expression of the chemokine receptor CCR5 on virus epitope-specific memory and effector CD8+ T cells. J. Immunol. 2002. 168: 22252232.
  • 13
    Toossi, Z., Virological and immunological impact of tuberculosis on human immunodeficiency virus type 1 disease. J. Infect. Dis. 2003. 188: 11461155.
  • 14
    Cocchi, F., DeVico, A. L., Garzino-Demo, A., Arya, S. K., Gallo, R. C. and Lusso, P., Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995. 270: 18111815.
  • 15
    Vandekerckhove, L., Verhofstede, C. and Vogelaers, D., Maraviroc: integration of a new antiretroviral drug class into clinical practice. J. Antimicrob. Chemother. 2008. 61: 11871190.
  • 16
    Koziel, H., Kim, S., Reardon, C., Li, X., Garland, R., Pinkston, P. and Kornfeld, H., Enhanced in vivo human immunodeficiency virus-1 replication in the lungs of human immunodeficiency virus-infected persons with Pneumocystis carinii pneumonia. Am. J. Respir. Crit. Care Med. 1999. 160: 20482055.
  • 17
    Wood, K. L., Chaiyarit, P., Day, R. B., Wang, Y., Schnizlein-Bick, C. T., Gregory, R. L. and Twigg III, H. L., Measurements of HIV viral loads from different levels of the respiratory tract. Chest 2003. 124: 536542.
  • 18
    Toossi, Z., Nicolacakis, K., Xia, L., Ferrari, N. A., and Rich, E. A., Activation of latent HIV-1 by Mycobacterium tuberculosis and its purified protein derivative in alveolar macrophages from HIV-infected individuals in vitro. J. Acquir. Immune Defic. Syndr Hum Retrovirol. 1997. 15: 325331.
  • 19
    Kaner, R. J., Santiago, F., Rahaghi, F., Michaels, E., Moore, J. P. and Crystal, R. G., Adenovirus vectors block human immunodeficiency virus-1 replication in human alveolar macrophages by inhibition of the long terminal repeat. Am. J. Respir. Cell Mol. Biol. 2010. 43: 234242.
  • 20
    Brenchley, J. M., Knox, K. S., Asher, A. I., Price, D. A., Kohli, L. M., Gostick, E., Hill, B. J. et al., High frequencies of polyfunctional HIV-specific T cells are associated with preservation of mucosal CD4 T cells in bronchoalveolar lavage. Mucosal Immunol. 2008. 1: 4958.
  • 21
    Nakata, K., Rom, W. N., Honda, Y., Condos, R., Kanegasaki, S., Cao, Y. and Weiden, M., Mycobacterium tuberculosis enhances human immunodeficiency virus-1 replication in the lung. Am. J. Respir. Crit. Care Med. 1997. 155: 9961003.
  • 22
    Owen, R. E., Heitman, J. W., Hirschkorn, D. F., Lanteri, M. C., Biswas, H. H., Martin, J. N., Krone, M. R. et al., HIV+ elite controllers have low HIV-specific T-cell activation yet maintain strong, polyfunctional T-cell responses. AIDS 2010. 24: 10951105.
  • 23
    Geldmacher, C., Ngwenyama, N., Schuetz, A., Petrovas, C., Reither, K., Heeregrave, E. J., Casazza, J. P. et al., Preferential infection and depletion of Mycobacterium tuberculosis-specific CD4 T cells after HIV-1 infection. J. Exp. Med. 2010. 207: 28692881.
  • 24
    Hoshino, Y., Tse, D. B., Rochford, G., Prabhakar, S., Hoshino, S., Chitkara, N., Kuwabara, K. et al., Mycobacterium tuberculosis-induced CXCR4 and chemokine expression leads to preferential X4 HIV-1 replication in human macrophages. J. Immunol. 2004. 172: 62516258.
  • 25
    Groot, F., van Capel, T. M., Schuitemaker, J., Berkhout, B. and de Jong, E. C., Differential susceptibility of naive, central memory and effector memory T cells to dendritic cell-mediated HIV-1 transmission. Retrovirology 2006. 3: 5261.
  • 26
    Fraziano, M., Cappelli, G., Santucci, M., Mariani, F., Amicosante, M., Casarini, M., Giosue, S. et al., Expression of CCR5 is increased in human monocyte-derived macrophages and alveolar macrophages in the course of in vivo and in vitro Mycobacterium tuberculosis infection. AIDS Res. Hum. Retroviruses. 1999. 15: 869874.
  • 27
    Gulzar, N. and Copeland, K. F., CD8 +T-cells: function and response to HIV infection. Curr. HIV Res. 2004. 2: 2337.
  • 28
    Taub, D. D., Turcovski-Corrales, S. M., Key, M. L., Longo, D. L. and Murphy W. J., Chemokines and T lymphocyte activation: beta chemokines costimulate human T lymphocyte activation in vitro. J. Immunol. 1996. 156: 20952103.
  • 29
    Mayanja-Kizza, H., Wajja, A., Wu, M., Peters, P., Nalugwa, G., Mubiru, F., Aung, H. et al., Activation of beta-chemokines and CCR5 in persons infected with human immunodeficiency virus type 1 and tuberculosis. J. Infect. Dis. 2001. 183: 18011804.
  • 30
    Wolday, D., Tegbaru, B., Kassu, A., Messele, T., Coutinho, R., van Baarle, D. and Miedema, F., Expression of chemokine receptors CCR5 and CXCR4 on CD4+ T cells and plasma chemokine levels during treatment of active tuberculosis in HIV-1-coinfected patients. J. Acquir. Immune Defic. Syndr. 2005. 39: 265271.
  • 31
    Wagner, L., Yang, O. O., Garcia-Zepeda, E. A., Ge, Y., Kalams, S. A., Walker, B. D., Pasternack, M. S. et al., Beta-chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans. Nature 1998. 391:90811.
  • 32
    Stegelmann, F., Bastian, M., Swoboda, K., Bhat, R., Kiessler, V., Krensky, A. M., Roellinghoff, M. et al., Coordinate expression of CC chemokine ligand 5, granulysin, and perforin in CD8 + T cells provides a host defense mechanism against M. tuberculosis. J. Immunol. 2005. 175:747483.
  • 33
    Kelly, M. D., Naif, H. M., Adams, S. L., Cunningham, A. L. and Lloyd, A. R., Dichotomous effects of beta-chemokines on HIV replication in monocytes and monocyte-derived macrophages. J. Immunol. 1998. 160: 30913095.
  • 34
    Veazey, R. S., Marx, P. A. and Lackner, A. A., Vaginal CD4+ T cells express high levels of CCR5 and are rapidly depleted in simian immunodeficiency virus infection. J. Infect. Dis. 2003. 187: 769776.
  • 35
    Geldmacher, C., Gray, C., Nason, M., Currier, J. R., Haule, A., Njovu, L., Geis, S. et al., A high viral burden predicts the loss of CD8 T-cell responses specific for subdominant gag epitopes during chronic human immunodeficiency virus infection. J. Virol. 2007. 81: 1380913815.
  • 36
    Jambo, K. C., Sepako, E., Fullerton, D. G., Mzinza, D., Glennie, S., Wright, A. K., Heyderman, R. S. et al., Bronchoalveolar CD4+ T cell responses to respiratory antigens are impaired in HIV-infected adults. Thorax 2011. 66 (5): 375382.
  • 37
    Jafari, C., Ernst, M., Strassburg, A., Greinert, U., Kalsdorf, B., Kirsten, D. and Lange, C., Local immunodiagnosis of pulmonary tuberculosis by enzyme-linked immunospot. Eur. Respir. J. 2008. 31: 261265.
  • 38
    Scott, L. E., Noble, L. D., Moloi, J., Erasmus, L., Venter, W. D. F., and Stevens, W., Evaluation of the Abbott m2000 real time human immunodeficiency virus type 1 (HIV-1) assay for HIV load monitoring in South Africa compared to the Roche Cobas AmpliPrep-Cobas Amplicor, Roche Cobas AmpliPrep-Cobas TaqMan HIV-1, and BioMerieux NucliSENS EasyQ HIV-1 assays. J. Clin. Microbiol. 2009. 47: 220917.
  • 39
    Rennard, S. I., Basset, G., Lecossier, D., O'Donnell, K. M., Pinkston, P., Martin, P. G. and Crystal, R. G., Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J. Appl. Physiol. 1986. 60: 532538.
  • 40
    Tadokera, R., Meintjes, G., Skolimowska, K. H., Wilkinson, K. A., Matthews, K., Seldon, R., Chegou, N. N. et al., Hypercytokinaemia accompanies HIV-tuberculosis immune reconstitution inflammatory syndrome. Eur. Respir. J. 2011. 37: 12481259.