• breast tumor;
  • IL-17;
  • immunosuppression;
  • regulatory T (Treg) cells

Breast cancer is a leading cause of neoplasia-associated death in women worldwide. Regulatory T (Treg) and Th17 cells are enriched within some tumors, but the role these cells play in invasive ductal carcinoma (IDC) of the breast is unknown. We show that CD25+CD4+ T cells from PBMCs and tumor express high levels of Foxp3, GITR, CTLA-4, and CD103, indicating that tumor-infiltrating Treg cells are functional and possibly recruited by CCL22. Additionally, we observed upregulation of Th17-related molecules (IL-17A, RORC, and CCR6) and IL-17A produced by tumor-infiltrating CD4+ and CD8+ T lymphocytes. The angiogenic factors CXCL8, MMP-2, MMP-9, and vascular endothelial growth factor detected within the tumor are possibly induced by IL-17 and indicative of poor disease prognosis. Treg and Th17 cells were synchronically increased in IDC patients, with positive correlation between Foxp3, IL-17A, and RORC expression, and associated with tumor aggressiveness. Therefore, Treg and Th17 cells can affect disease progression by Treg-cell-mediated suppression of the effector T-cell response, as indicated by a decrease in the proliferation of T cells isolated from PBMCs of IDC patients and induction of angiogenic factors by IL-17-producing Th17. The understanding of regulation of the Treg/Th17 axis may result in novel perspectives for the control of invasive tumors.