SEARCH

SEARCH BY CITATION

References

  • 1
    Nance, D. M. and Sanders, V. M., Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav. Immun. 2007. 21: 736745.
  • 2
    Sanders, V. M., The role of adrenoceptor-mediated signals in the modulation of lymphocyte function. Adv. Neuroimmunol. 1995. 5: 283298.
  • 3
    Sanders, V. M. and Straub, R. H., Norepinephrine, the beta-adrenergic receptor, and immunity. Brain Behav. Immun. 2002. 16: 290332.
  • 4
    Kohm, A. P., Tang, Y., Sanders, V. M. and Jones, S. B., Activation of antigen-specific CD4+ Th2 cells and B cells in vivo increases norepinephrine release in the spleen and bone marrow. J. Immunol. 2000. 165: 725733.
  • 5
    Besedovsky, H. O., del Rey, A. E. and Sorkin, E., Immune-neuroendocrine interactions. J. Immunol. 1985. 135: 750s754s.
  • 6
    Sanders, V. M., Baker, R. A., Ramer-Quinn, D. S., Kasprowicz, D. J., Fuchs, B. A. and Street, N. E., Differential expression of the beta2-adrenergic receptor by Th1 and Th2 clones: implications for cytokine production and B cell help. J. Immunol. 1997. 158: 42004210.
  • 7
    Elenkov, I. J., Wilder, R. L., Chrousos, G. P. and Vizi, E. S., The sympathetic nerve–an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 2000. 52: 595638.
  • 8
    Ramer-Quinn, D. S., Swanson, M. A., Lee, W. T. and Sanders, V. M., Cytokine production by naive and primary effector CD4+ T cells exposed to norepinephrine. Brain Behav. Immun. 2000. 14: 239255.
  • 9
    Panina-Bordignon, P., Mazzeo, D., Lucia, P. D., D'Ambrosio, D., Lang, R., Fabbri, L., Self, C. et al., Beta2-agonists prevent Th1 development by selective inhibition of interleukin 12. J. Clin. Invest. 1997. 100: 15131519.
  • 10
    Fontenot, J. D., Gavin, M. A. and Rudensky, A. Y., Foxp3 programs the development and function of CD4+CD25 +regulatory T cells. Nat. Immunol. 2003. 4: 330336.
  • 11
    Hori, S., Nomura, T. and Sakaguchi, S., Control of regulatory T cell development by the transcription factor Foxp3. Science 2003. 299: 10571061.
  • 12
    Brunkow, M. E., Jeffery, E. W., Hjerrild, K. A., Paeper, B., Clark, L. B., Yasayko, S. A., Wilkinson, J. E. et al., Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 2001. 27: 6873.
  • 13
    Lafaille, J. J., Nagashima, K., Katsuki, M. and Tonegawa, S., High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice. Cell 1994. 78: 399408.
  • 14
    Van de Keere, F. and Tonegawa, S., CD4(+) T cells prevent spontaneous experimental autoimmune encephalomyelitis in anti-myelin basic protein T cell receptor transgenic mice. J. Exp. Med. 1998. 188: 18751882.
  • 15
    Chatila, T. A., Blaeser, F., Ho, N., Lederman, H. M., Voulgaropoulos, C., Helms, C. and Bowcock, A. M., JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J. Clin. Invest. 2000. 106: R75R81.
  • 16
    Bodor, J., Bodorova, J. and Gress, R. E., Suppression of T cell function: a potential role for transcriptional repressor ICER. J. Leukoc. Biol. 2000. 67: 774779.
  • 17
    Vendetti, S., Riccomi, A., Sacchi, A., Gatta, L., Piolo, C. and De Magistris, M. T., Cyclic adenosine 5′-monophosphate and calcium induce CD152 (CTLA-4) up-regulation in resting CD4(+) T lymphocytes. J. Immunol. 2002. 169: 62316235.
  • 18
    Riether, C., Kavelaars, A., Wirth, T., Pacheco-Lopez, G., Doenlen, R., Willemen, H., Heijnen, C. J. et al., Stimulation of beta(2)-adrenergic receptors inhibits calcineurin activity in CD4(+) T cells via PKA-AKAP interaction. Brain Behav. Immun. 2011. 25: 5966.
  • 19
    Chrivia, J. C., Kwok, R. P. S., Lamb, N., Hagiwara, M., Montminy, M. R. and Goodman, R. H., Phosphorylated CREB binds specifically to the nuclear-protein CBP. Nature 1993. 365: 855859.
  • 20
    Bodor, J., Fehervari, Z., Diamond, B. and Sakaguchi, S., Regulatory T cell-mediated suppression: potential role of ICER. J. Leukoc. Biol. 2007. 81: 161167.
  • 21
    Mosenden, R. and Tasken, K., Cyclic AMP-mediated immune regulation–overview of mechanisms of action in T cells. Cell. Signal. 2011. 23: 10091016.
  • 22
    Bodor, J. and Habener, J. F., Role of transcriptional repressor ICER in cyclic AMP-mediated attenuation of cytokine gene expression in human thymocytes. J. Biol. Chem. 1998. 273: 95449551.
  • 23
    Vaeth, M., Gogishvili, T., Bopp, T., Klein, M., Berberich-Siebelt, F., Gattenloehner, S., Avots, A. et al., Regulatory T cells facilitate the nuclear accumulation of inducible cAMP early repressor (ICER) and suppress nuclear factor of activated T cell c1 (NFATc1). Proc. Natl. Acad. Sci. USA 2011. 108: 24802485.
  • 24
    Bhowmick, S., Singh, A., Flavell, R. A., Clark, R. B., O'Rourke, J. and Cone, R. E., The sympathetic nervous system modulates CD4(+)FoxP3(+) regulatory T cells via a TGF-beta-dependent mechanism. J. Leukoc. Biol. 2009. 86: 12751283.
  • 25
    Grebe, K. M., Editorial: regulation of the regulator: sympathetic nervous system control of regulatory T cells. J. Leukoc. Biol. 2009. 86: 12691270.
  • 26
    Thornton, A. M. and Shevach, E. M., CD4(+)CD25(+) immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 1998. 188: 287296.
  • 27
    Bopp, T., Becker, C., Klein, M., Klein-Hessling, S., Palmetshofer, A., Serfling, E., Heib, V. et al., Cyclic adenosine monophosphate is a key component of regulatory T cell mediated suppression. J. Exp. Med. 2007. 204: 13031310.
  • 28
    Bodor, J., Fehervari, Z., Diamond, B. and Sakaguchi, S., Frontline: ICER/CREM-mediated transcriptional attenuation of IL-2 and its role in suppression by regulatory T cells. Eur. J. Immunol. 2007. 37: 884895.
  • 29
    Bodor, J., Bopp, T., Vaeth, M., Klein, M., Serfling, E., Hünig, T., Becker, C. et al., Cyclic AMP underpins suppression by regulatory T cells. Eur. J. Immunol. 2012. 42: 13751384.
  • 30
    Takahashi, T., Tagami, T., Yamazaki, S., Uede, T., Shimizu, J., Sakaguchi, N., Mak, T. W. et al., Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 2000. 192: 303309.
  • 31
    Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., Nomura, T. et al., CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008. 322: 271275.
  • 32
    Paust, S., Lu, L. R., McCarty, N. and Cantor, H., Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc. Natl. Acad. Sci. USA 2004. 101: 1039810403.
  • 33
    Gravano, D. M. and Vignali, D. A., The battle against immunopathology: infectious tolerance mediated by regulatory T cells. Cell Mol. Life Sci. 2012. 69: 19972008.
  • 34
    Kendal, A. R. and Waldmann, H., Infectious tolerance: therapeutic potential. Curr. Opin. Immunol. 2010. 22: 560565.
  • 35
    Andersson, J., Tran, D. Q., Pesu, M., Davidson, T. S., Ramsey, H., O'Shea, J. J. and Shevach, E. M., CD4(+)FoxP3(+) regulatory T cells confer infectious tolerance in a TGF-beta-dependent manner. J. Exp. Med. 2008. 205: 19751981.
  • 36
    Baratelli, F., Lin, Y., Zhu, L., Yang, S. C., Heuze-Vourc'h, N., Zeng, G., Reckamp, K. et al., Prostaglandin E-2 induces FOXP3 gene expression and T regulatory cell function in human CD4(+) T cells. J. Immunol. 2005. 175: 14831490.
  • 37
    Mahic, M., Yaqub, S., Johansson, C. C., Tasken, K. and Aandahl, E. M., FOXP3(+)CD4(+)CD25(+) adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E-2-dependent mechanism. J. Immunol. 2006. 177: 246254.
  • 38
    Kim, H.-P. and Leonard, W. J., CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J. Exp. Med. 2007. 204: 15431551.
  • 39
    Merkenschlager, M. and von Boehmer, H., PI3 kinase signalling blocks Foxp3 expression by sequestering Foxo factors. J. Exp. Med. 2010. 207: 13471350.
  • 40
    Sauer, S., Bruno, L., Hertweck, A., Finlay, D., Leleu, M., Spivakov, M., Knight, Z. A. et al., T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl. Acad. Sci. USA 2008. 105: 77977802.
  • 41
    Monfar, M., Lemon, K. P., Grammer, T. C., Cheatham, L., Chung, J., Vlahos, C. J. and Blenis, J., Activation of pp70/85 S6 kinases in interleukin-2-responsive lymphoid cells is mediated by phosphatidylinositol 3-kinase and inhibited by cyclic AMP. Mol. Cell. Biol. 1995. 15: 326337.
  • 42
    Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T. B., Oukka, M., Weiner, H. L. et al., Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006. 441: 235238.