SEARCH

SEARCH BY CITATION

References

  • 1
    Lawn, J. E., Cousens, S. and Zupan, J., 4 million neonatal deaths: when? Where? Why? Lancet 2005. 365: 891900.
  • 2
    Martinot, A., Leclerc, F., Cremer, R., Leteurtre, S., Fourier, C. and Hue, V., Sepsis in neonates and children: definitions, epidemiology, and outcome. Pediatr. Emerg. Care 1997. 13: 277281.
  • 3
    Wynn, J. L., Neu, J., Moldawer, L. L. and Levy, O., Potential of immunomodulatory agents for prevention and treatment of neonatal sepsis. J. Perinatol. 2009. 29: 7988.
  • 4
    PrabhuDas, M., Adkins, B., Gans, H., King, C., Levy, O., Ramilo, O. and Siegrist, C. A., Challenges in infant immunity: implications for responses to infection and vaccines. Nat. Immunol. 2011. 12: 189194.
  • 5
    Kermorvant-Duchemin, E., Laborie, S., Rabilloud, M., Lapillonne, A. and Claris, O., Outcome and prognostic factors in neonates with septic shock. Pediatr. Crit. Care Med. 2008. 9: 186191.
  • 6
    Watson, R. S., Carcillo, J. A., Linde-Zwirble, W. T., Clermont, G., Lidicker, J. and Angus, D. C., The epidemiology of severe sepsis in children in the United States. Am. J. Respir. Crit. Care Med. 2003. 167: 695701.
  • 7
    Pollard, A. J., Perrett, K. P. and Beverley, P. C., Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nat. Rev. Immunol. 2009. 9: 213220.
  • 8
    Adams-Chapman, I. and Stoll, B. J., Neonatal infection and long-term neurodevelopmental outcome in the preterm infant. Curr. Opin. Infect. Dis. 2006. 19: 290297.
  • 9
    Stoll, B. J., Hansen, N. I., Adams-Chapman, I., Fanaroff, A. A., Hintz, S. R., Vohr, B. and Higgins, R. D., Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA 2004. 292: 23572365.
  • 10
    Gray, P. H., Burns, Y. R., Mohay, H. A., O'Callaghan, M. J. and Tudehope, D. I., Neurodevelopmental outcome of preterm infants with bronchopulmonary dysplasia. Arch. Dis. Child 1995. 73: F128F134.
  • 11
    Siegrist, C. A., Neonatal and early life vaccinology. Vaccine 19: 33313346.
  • 12
    Klein, J. O., Baker, C. J., Remington, J. S. and Wilson, C. B., Current concepts of infection of the fetus and newborn infant. In Klein, J. O., Remington, J. S., Wilson, C. B. and Baker, C. J. (Eds.), Infections diseases of the fetus and newborn infant (6th ed). Elsevier Saunders, Philadelphia, 2006, pp. 124.
  • 13
    Adkins, B., Leclerc, C. and Marshall-Clarke, S., Neonatal adaptive immunity comes of age. Nat. Rev. Immunol. 2004. 4: 553564.
  • 14
    Lewis, D. B. and Wilson, C. B., Developmental immunology and role of host defenses in fetal and neonatal susceptibility to infection. In Klein, J. O., Remington, J. S., Wilson, C. B. and Baker, C. J. (Eds.), Infections diseases of the fetus and newborn infant (6th ed). Elsevier Saunders, Philadelphia, 2006, pp. 25128.
  • 15
    Levy, O., Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat. Rev. Immunol. 2007. 7: 379390.
  • 16
    Haines, C. J., Giffon, T. D., Lu, L. S., Lu, X., Tessier-Lavigne, M., Ross, D. T. and Lewis, D. B., Human CD4+ T cell recent thymic emigrants are identified by protein tyrosine kinase 7 and have reduced immune function. J. Exp. Med. 2009. 206: 275285.
  • 17
    Opiela, S. J., Koru-Sengul, T. and Adkins, B., Murine neonatal recent thymic emigrants are phenotypically and functionally distinct from adult recent thymic emigrants. Blood 2009. 113: 56355643.
  • 18
    Siegrist, C. A. and Aspinall, R., B-cell responses to vaccination at the extremes of age. Nat. Rev. Immunol. 2009. 9: 185194.
  • 19
    Marcoe, J. P., Lim, J. R., Schaubert, K. L., Fodil-Cornu, N., Matka, M., McCubbrey, A. L., Farr, A. R. et al., TGF-β is responsible for NK cell immaturity during ontogeny and increased susceptibility to infection during mouse infancy. Nat. Immunol. 2012. 13: 843850.
  • 20
    Guilmot, A., Hermann, E., Braud, V. M., Carlier, Y. and Truyens, C., Natural killer cell responses to infections in early life. J. Innate Immun. 2011. 3: 280288.
  • 21
    Cuenca, A. G., Wynn, J. L., Kelly-Scumpia, K. M., Scumpia, P. O., Vila, L., Delano, M. J., Mathews, C. E. et al., Critical role for CXC ligand 10/CXC receptor 3 signaling in the murine neonatal response to sepsis. Infect. Immun. 2011. 79: 27462754.
  • 22
    Wynn, J. L., Scumpia, P. O., Winfield, R. D., Delano, M. J., Kelly-Scumpia, K., Barker, T., Ungaro, R. et al., Defective innate immunity predisposes murine neonates to poor sepsis outcome but is reversed by TLR agonists. Blood 2008. 112: 17501758.
  • 23
    Kinchen, J. M. and Ravichandran, K. S., Phagosome maturation: going through the acid test. Nat. Rev. Mol. Cell Biol. 2008. 9: 781795.
  • 24
    Blander, J. M. and Medzhitov, R., Regulation of phagosome maturation by signals from toll-like receptors. Science 2004. 304: 10141018.
  • 25
    Blander, J. M. and Medzhitov, R., On regulation of phagosome maturation and antigen presentation. Nat. Immunol. 2006. 7: 10291035.
  • 26
    Wynn, J. L., Scumpia, P. O., Delano, M. J., O'Malley, K. A., Ungaro, R., Abouhamze, A. and Moldawer, L. L., Increased mortality and altered immunity in neonatal sepsis produced by generalized peritonitis. Shock 2007. 28: 675683.
  • 27
    Nathan, C., Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 2006. 6: 173182.
  • 28
    Cummings, C. J., Martin, T. R., Frevert, C. W., Quan, J. M., Wong, V. A., Mongovin, S. M., Hagen, T. R. et al., Expression and function of the chemokine receptors CXCR1 and CXCR2 in sepsis. J. Immunol. 1999. 162: 23412346.
  • 29
    Rios-Santos, F., Alves-Filho, J. C., Souto, F. O., Spiller, F., Freitas, A., Lotufo, C. M., Soares, M. B. et al., Down-regulation of CXCR2 on neutrophils in severe sepsis is mediated by inducible nitric oxide synthase-derived nitric oxide. Am. J. Respir. Crit. Care Med. 2007. 175: 490497.
  • 30
    Aragay, A. M., Mellado, M., Frade, J. M., Martin, A. M., Jimenez-Sainz, M. C., Martinez-A, C. and Mayor Jr., F., Monocyte chemoattractant protein-1-induced CCR2B receptor desensitization mediated by the G protein-coupled receptor kinase 2. Proc. Natl. Acad. Sci. USA 1998. 95: 29852990.
  • 31
    Vroon, A., Heijnen, C. J. and Kavelaars, A., GRKs and arrestins: regulators of migration and inflammation. J. Leukoc. Biol. 2006. 80: 12141221.
  • 32
    Arraes, S. M., Freitas, M. S., da Silva, S. V., de Paula Neto, H. A., Alves-Filho, J. C., Auxiliadora Martins, M., Basile-Filho, A. et al., Impaired neutrophil chemotaxis in sepsis associates with GRK expression and inhibition of actin assembly and tyrosine phosphorylation. Blood 2006. 108: 29062913.
  • 33
    Sansonetti, P., Phagocytosis of bacterial pathogens: implications in the host response. Semin. Immunol. 2001. 13: 381390.
  • 34
    Kollmann, T. R., Crabtree, J., Rein-Weston, A., Blimkie, D., Thommai, F., Wang, X. Y., Lavoie, P. M. et al., Neonatal innate TLR-mediated responses are distinct from those of adults. J. Immunol. 2009. 183: 71507160.
  • 35
    Joyner, J. L., Augustine, N. H., Taylor, K. A., La Pine, T. R. and Hill, H. R., Effects of group B streptococci on cord and adult mononuclear cell interleukin-12 and interferon-gamma mRNA accumulation and protein secretion. J. Infect. Dis. 2000. 182: 974977.
  • 36
    Lee, S. M., Suen, Y., Chang, L., Bruner, V., Qian, J., Indes, J., Knoppel, E. et al., Decreased interleukin-12 (IL-12) from activated cord versus adult peripheral blood mononuclear cells and upregulation of interferon-gamma, natural killer, and lymphokine-activated killer activity by IL-12 in cord blood mononuclear cells. Blood 1996. 88: 945954.
  • 37
    Angelone, D. F., Wessels, M. R., Coughlin, M., Suter, E. E., Valentini, P., Kalish, L. A. and Levy, O., Innate immunity of the human newborn is polarized toward a high ratio of IL-6/TNF-alpha production in vitro and in vivo. Pediatr. Res. 2006. 60: 205209.
  • 38
    Vanden Eijnden, S., Goriely, S., De Wit, D., Goldman, M. and Willems, F., Preferential production of the IL-12(p40)/IL-23(p19) heterodimer by dendritic cells from human newborns. Eur. J. Immunol. 2006. 36: 2126.
  • 39
    Weighardt, H., Feterowski, C., Veit, M., Rump, M., Wagner, H. and Holzmann, B., Increased resistance against acute polymicrobial sepsis in mice challenged with immunostimulatory CpG oligodeoxynucleotides is related to an enhanced innate effector cell response. J. Immunol. 2000. 165: 45374543.
  • 40
    Alves-Filho, J. C., Sônego, F., Souto, F. O., Freitas, A., Verri Jr, W. A., Auxiliadora-Martins, M., Basile-Filho, A. et al., Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat. Med. 2010. 16: 708712.
  • 41
    Zantl, N., Uebe, A., Neumann, B., Wagner, H., Siewert, J. R., Holzmann, B., Heidecke, C. D. and Pfeffer, K., Essential role of gamma interferon in survival of colon ascendens stent peritonitis, a novel murine model of abdominal sepsis. Infect. Immun. 1998. 66: 23002309.
  • 42
    Yost, C. C., Cody, M. J., Harris, E. S., Thornton, N. L., McInturff, A. M., Martinez, M. L., Chandler, N. B. et al., Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood 2009. 113: 64196427.
  • 43
    Ehlers, M. R., CR3: a general purpose adhesion-recognition receptor essential for innate immunity. Microbes Infect. 2000. 2: 289294.
  • 44
    Vidarsson, G. and van de Winkel, J. G., Fc receptor and complement receptor-mediated phagocytosis in host defence. Curr. Opin. Infect. Dis. 1998. 11: 271278.
  • 45
    O'Brien, G. C., Wang, J. H. and Redmond, H. P., Bacterial lipoprotein induces resistance to Gram-negative sepsis in TLR4-deficient mice via enhanced bacterial clearance. J. Immunol. 2005. 174: 10201026.
  • 46
    Buckley, J. M., Liu, J. H., Li, C. H., Blankson, S., Wu, Q. D., Jiang, Y., Redmond, H. P. et al., Increased susceptibility of ST2-deficient mice to polymicrobial sepsis is associated with an impaired bactericidal function. J. Immunol. 2011. 187: 42934299.
  • 47
    Alves-Filho, J. C., Freitas, A., Souto, F. O., Spiller, F., Paula-Neto, H., Silva, J. S., Gazzinelli, R. T. et al., Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis. Proc. Natl. Acad. Sci. USA 2009. 106: 40184023.
  • 48
    Wang, J. H., Doyle, M., Manning, B. J., Blankson, S., Wu, Q. D., Power, C., Cahill, R. et al., Cutting edge: bacterial lipoprotein induces endotoxin-independent tolerance to septic shock. J. Immunol. 2003. 170: 1418.
  • 49
    Dri, P., Presani, G., Perticarari, S., Albèri, L., Prodan, M. and Decleva, E., Measurement of phagosomal pH of normal and CGD-like human neutrophils by dual fluorescence flow cytometry. Cytometry 2002. 48: 159166.
  • 50
    Savina, A., Jancic, C., Hugues, S., Guermonprez, P., Vargas, P., Moura, I. C., Lennon-Duménil, A. M. et al., NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell 2006. 126: 205218.