• 1
    WHO, Global tuberculosis control: WHO Report 2010, WHO, Geneva, 2010.
  • 2
    Kirschner, D. E., Young, D.andFlynn, J. L., Tuberculosis: global approaches to a global disease. Curr. Opin. Biotechnol. 2010. 21: 524531.
  • 3
    Schwander, S. and Dheda, K., Human lung immunity against Mycobacterium tuberculosis: insights into pathogenesis and protection. Am. J. Respir. Crit. Care Med. 2011. 183: 696707.
  • 4
    Baena, A. and Porcelli, S. A., Evasion and subversion of antigen presentation by Mycobacterium tuberculosis. Tissue Antigens 2009. 74: 189204.
  • 5
    Abbas, A. K., Murphy, K. M.and Sher, A., Functional diversity of helper T lymphocytes. Nature 1996. 383: 787793.
  • 6
    Acosta-Rodriguez, E. V., Rivino, L., Geginat, J., Jarrossay, D., Gattorno, M., Lanzavecchia, A., Sallusto, al.,Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 2007. 8: 639646.
  • 7
    Annunziato, F., Cosmi, L., Santarlasci, V., Maggi, L., Liotta, F., Mazzinghi, B., Parente, E. et al., Phenotypic and functional features of human Th17 cells. J. Exp. Med. 2007. 204: 18491861.
  • 8
    Flynn, J. L. and Chan, J., Immunology of tuberculosis. Annu. Rev. Immunol. 2001. 19: 93129.
  • 9
    Harari, A., Rozot, V., Enders, F. B., Perreau, M., Stalder, J. M., Nicod, L. P., Cavassini, M. et al., Dominant TNF-alpha+ Mycobacterium tuberculosis-specific CD4+ T cell responses discriminate between latent infection and active disease. Nature Med. 2011. 17: 372376.
  • 10
    Umemura, M., Yahagi, A., Hamada, S., Begum, M. D., Watanabe, H., Kawakami, K., Suda, T. et al., IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. J. Immunol. 2007. 178: 37863796.
  • 11
    Gallegos, A. M., van Heijst, J. W., Samstein, M., Su, X., Pamer, E. G. and Glickman, M. S., A gamma interferon independent mechanism of CD4 T cell mediated control of M. tuberculosis infection in vivo. PLoS Pathogens 2011. 7: e1002052.
  • 12
    Flynn, J. L., Chan, J., Triebold, K. J., Dalton, D. K., Stewart, T. A. and Bloom, B. R., An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 1993. 178: 22492254.
  • 13
    Scriba, T. J., Kalsdorf, B., Abrahams, D. A., Isaacs, F., Hofmeister, J., Black, G., Hassan, H. Y. et al., Distinct, specific IL-17- and IL-22-producing CD4+ T cell subsets contribute to the human anti-mycobacterial immune response. J. Immunol. 2008. 180: 19621970.
  • 14
    Khader, S. A. and Cooper, A. M., IL-23 and IL-17 in tuberculosis. Cytokine 2008. 41: 7983.
  • 15
    Cooper, A. M., Editorial: Be careful what you ask for: is the presence of IL-17 indicative of immunity? J. Leukoc. Biol. 2010. 88: 221223.
  • 16
    Khader, S. A., Bell, G. K., Pearl, J. E., Fountain, J. J., Rangel-Moreno, J., Cilley, G. E., Shen, F. et al., IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol. 2007. 8: 369377.
  • 17
    van de Veerdonk, F. L., Teirlinck, A. C., Kleinnijenhuis, J., Kullberg, B. J., van Crevel, R., van der Meer, J. W., Joosten, L. A. et al., Mycobacterium tuberculosis induces IL-17A responses through TLR4 and dectin-1 and is critically dependent on endogenous IL-1. J. Leukoc. Biol. 2010. 88: 227232.
  • 18
    Cruz, A., Fraga, A. G., Fountain, J. J., Rangel-Moreno, J., Torrado, E., Saraiva, M., Pereira, D. R. et al., Pathological role of interleukin 17 in mice subjected to repeated BCG vaccination after infection with Mycobacterium tuberculosis. J. Exp. Med. 2010. 207: 16091616.
  • 19
    Vordermeier, H. M., Villarreal-Ramos, B., Cockle, P. J., McAulay, M., Rhodes, S. G., Thacker, T., Gilbert, S. C. et al., Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis. Infect. Immun. 2009. 77: 33643373.
  • 20
    Cellerai, C., Perreau, M., Rozot, V., Enders, F. B., Pantaleo, G. and Harari, A., Proliferation capacity and cytotoxic activity are mediated by functionally and phenotypically distinct virus-specific CD8 T cells defined by interleukin-7R{alpha} (CD127) and perforin expression. J. Virol. 2010. 84: 38683878.
  • 21
    Harari, A., Enders, F. B., Cellerai, C., Bart, P. A. and Pantaleo, G., Distinct profiles of cytotoxic granules in memory CD8 T cells correlate with function, differentiation stage, and antigen exposure. J. Virol. 2009. 83: 28622871.
  • 22
    Cooper, A. M., Kipnis, A., Turner, J., Magram, J., Ferrante, J. and Orme, I. M., Mice lacking bioactive IL-12 can generate protective, antigen-specific cellular responses to mycobacterial infection only if the IL-12 p40 subunit is present. J. Immunol. 2002. 168: 13221327.
  • 23
    Khader, S. A., Pearl, J. E., Sakamoto, K., Gilmartin, L., Bell, G. K., Jelley-Gibbs, D. M., Ghilardi, N. et al., IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-gamma responses if IL-12p70 is available. J. Immunol. 2005. 175: 788795.
  • 24
    Lockhart, E., Green, A. M. and Flynn, J. L., IL-17 production is dominated by gamma delta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J. Immunol. 2006. 177: 46624669.
  • 25
    Wozniak, T. M., Ryan, A. A.andBritton, W. J., Interleukin-23 restores immunity to Mycobacterium tuberculosis infection in IL-12p40-deficient mice and is not required for the development of IL-17-secreting T cell responses. J. Immunol. 2006. 177: 86848692.
  • 26
    Wozniak, T. M., Ryan, A. A., Triccas, J. A. and Britton, W. J., Plasmid interleukin-23 (IL-23), but not plasmid IL-27, enhances the protective efficacy of a DNA vaccine against Mycobacterium tuberculosis infection. Infect. Immun. 2006. 74: 557565.
  • 27
    Basile, J. I., Geffner, L. J., Romero, M. M., Balboa, L., Sabio, Y. G. C., Ritacco, V., Garcia, A. et al., Outbreaks of mycobacterium tuberculosis MDR strains induce high IL-17 T-cell response in patients with MDR tuberculosis that is closely associated with high antigen load. J. Infect. Dis. 2011. 204: 10541064.
  • 28
    Acosta-Rodriguez, E. V., Napolitani, G., Lanzavecchia, A. and Sallusto, F., Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 2007. 8: 942949.
  • 29
    Masopust, D., Vezys, V., Marzo, A. L. and Lefrancois, L., Preferential localization of effector memory cells in nonlymphoid tissue. Science 2001. 291: 24132417.
  • 30
    Sallusto, F., Mackay, C. R. and Lanzavecchia, A., The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 2000. 18: 593620.
  • 31
    Haney, D., Quigley, M. F., Asher, T. E., Ambrozak, D. R., Gostick, E., Price, D. A., Douek, D. C. et al., Isolation of viable antigen-specific CD8+ T cells based on membrane-bound tumor necrosis factor (TNF)-alpha expression. J. Immunol. Methods 2011. 369: 3341.
  • 32
    van de Veerdonk, F. L., Marijnissen, R. J., Kullberg, B. J., Koenen, H. J., Cheng, S. C., Joosten, I., van den Berg, W. B. et al., The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe 2009. 5: 329340.
  • 33
    Liu, P. T., Schenk, M., Walker, V. P., Dempsey, P. W., Kanchanapoomi, M., Wheelwright, M., Vazirnia, A. et al., Convergence of IL-1beta and VDR activation pathways in human TLR2/1-induced antimicrobial responses. PLoS One 2009. 4: e5810.
  • 34
    Singh, P. K., Jia, H. P., Wiles, K., Hesselberth, J., Liu, L., Conway, B. A., Greenberg, E. P. et al., Production of beta-defensins by human airway epithelia. Proc. Natl. Acad. Sci. U. S. A. 1998. 95: 1496114966.
  • 35
    Minegishi, Y., Saito, M., Nagasawa, M., Takada, H., Hara, T., Tsuchiya, S., Agematsu, K. et al., Molecular explanation for the contradiction between systemic Th17 defect and localized bacterial infection in hyper-IgE syndrome. J. Exp. Med. 2009. 206: 12911301.
  • 36
    Curtis, M. M., Rowell, E., Shafiani, S., Negash, A., Urdahl, K. B., Wilson, C. B. and Way, S. S., Fidelity of pathogen-specific CD4+ T cells to the Th1 lineage is controlled by exogenous cytokines, interferon-gamma expression, and pathogen lifestyle. Cell Host Microbe 2010. 8: 163173.
  • 37
    Young, D. B., Gideon, H. P. and Wilkinson, R. J., Eliminating latent tuberculosis. Trends Microbiol. 2009. 17: 183188.
  • 38
    Barry, C. E., 3rd, Boshoff, H. I., Dartois, V., Dick, T., Ehrt, S., Flynn, J., Schnappinger, D. et al., The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat. Rev. Microbiol. 2009. 7: 845855.
  • 39
    Perreau, M. and Kremer, E. J., Frequency, proliferation, and activation of human memory T cells induced by a nonhuman adenovirus. J. Virol. 2005. 79: 1459514605.
  • 40
    Perreau, M., Welles, H. C., Harari, A., Hall, O., Martin, R., Maillard, M., Dorta, G. et al., DNA/NYVAC vaccine regimen induces HIV-specific CD4 and CD8 T-cell responses in intestinal mucosa. J. Virol. 2011. 85: 98549862.
  • 41
    Kalsdorf, B., Scriba, T. J., Wood, K., Day, C. L., Dheda, K., Dawson, R., Hanekom, W. A. et al., HIV-1 infection impairs the bronchoalveolar T-cell response to mycobacteria. Am. J. Respir. Crit. Care Med. 2009. 180: 12621270.
  • 42
    Harari, A., Cellerai, C., Enders, F. B., Kostler, J., Codarri, L., Tapia, G., Boyman, O. et al., Skewed association of polyfunctional antigen-specific CD8 T cell populations with HLA-B genotype. Proc. Natl. Acad. Sci. U. S. A. 2007. 104: 1623316238.
  • 43
    Roederer, M., Nozzi, J. L. and Nason, M. C., SPICE: exploration and analysis of post-cytometric complex multivariate datasets. Cytometry. A: J. Int. Soc. Anal. Cytol. 2011. 79A: 167174.