SEARCH

SEARCH BY CITATION

References

  • 1
    Kotton, C. N., Kumar, D., Caliendo, A. M., Asberg, A., Chou, S., Snydman, D. R., Allen, U. et al., International consensus guidelines on the management of cytomegalovirus in solid organ transplantation. Transplantation 2010. 89: 779795.
  • 2
    Martin, J. M. and Danziger-Isakov, L. A., Cytomegalovirus risk, prevention, and management in pediatric solid organ transplantation. Pediatr. Transplant. 2011. 15: 229236.
  • 3
    Allen, U. D., Current status and impact of CMV prevention following pediatric organ transplantation. Pediatr. Transplant. 2008. 12: 389392.
  • 4
    Sester, M., Gärtner, B. C., Sester, U., Girndt, M., Mueller-Lantzsch, N. and Köhler, H., Is the CMV serologic status always accurate? A comparative analysis of humoral and cellular immunity. Transplantation 2003. 76: 12291231.
  • 5
    Sester, M., Gärtner, B. C. and Sester, U., Monitoring of CMV specific T-cell levels after organ transplantation. J. Lab. Med. 2008. 32: 121130.
  • 6
    Schmidt, T., Ritter, M., Dirks, J., Gartner, B. C., Sester, U. and Sester, M., Cytomegalovirus-specific T-cell immunity to assign the infection status in individuals with passive immunity: a proof of principle. J. Clin. Virol. 2012. 54: 272275.
  • 7
    Prendergast, A. J., Klenerman, P. and Goulder, P. J., The impact of differential antiviral immunity in children and adults. Nat. Rev. Immunol. 2012. 12: 636648.
  • 8
    Leuridan, E. and Van Damme, P., Passive transmission and persistence of naturally acquired or vaccine-induced maternal antibodies against measles in newborns. Vaccine 2007. 25: 62966304.
  • 9
    Gillespie, G. M., Wills, M. R., Appay, V., O'Callaghan, C., Murphy, M., Smith, N., Sissons, P. et al., Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8(+) T lymphocytes in healthy seropositive donors. J. Virol. 2000. 74: 81408150.
  • 10
    Khan, N., Shariff, N., Cobbold, M., Bruton, R., Ainsworth, J. A., Sinclair, A. J., Nayak, L. et al., Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J. Immunol. 2002. 169: 19841992.
  • 11
    Sester, M., Sester, U., Gärtner, B., Heine, G., Girndt, M., Mueller-Lantzsch, N., Meyerhans, A. et al., Levels of virus-specific CD4 T cells correlate with cytomegalovirus control and predict virus-induced disease after renal transplantation. Transplantation 2001. 71: 12871294.
  • 12
    Sester, U., Gärtner, B. C., Wilkens, H., Schwaab, B., Wössner, R., Kindermann, I., Girndt, M. et al., Differences in CMV-specific T-cell levels and long-term susceptibility to CMV infection after kidney, heart and lung transplantation. Am. J. Transplant. 2005. 5: 14831489.
  • 13
    Sester, U., Presser, D., Dirks, J., Gärtner, B. C., Köhler, H. and Sester, M., PD-1 expression and IL-2 loss of cytomegalovirus-specific T cells correlates with viremia and reversible functional anergy. Am. J. Transplant. 2008. 8: 14861497.
  • 14
    Pourgheysari, B., Khan, N., Best, D., Bruton, R., Nayak, L. and Moss, P. A., The cytomegalovirus-specific CD4+ T-cell response expands with age and markedly alters the CD4+ T-cell repertoire. J. Virol. 2007. 81: 77597765.
  • 15
    Tu, W., Chen, S., Sharp, M., Dekker, C., Manganello, A. M., Tongson, E. C., Maecker, H. T. et al., Persistent and selective deficiency of CD4+ T cell immunity to cytomegalovirus in immunocompetent young children. J. Immunol. 2004. 172: 32603267.
  • 16
    Komatsu, H., Inui, A., Sogo, T., Fujisawa, T., Nagasaka, H., Nonoyama, S., Sierro, S. et al., Large scale analysis of pediatric antiviral CD8+ T cell populations reveals sustained, functional and mature responses. Immun. Ageing 2006. 3: 11.
  • 17
    Appay, V., Dunbar, P. R., Callan, M., Klenerman, P., Gillespie, G. M., Papagno, L., Ogg, G. S. et al., Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med. 2002. 8: 379385.
  • 18
    Miles, D. J., van der Sande, M., Jeffries, D., Kaye, S., Ismaili, J., Ojuola, O., Sanneh, M. et al., Cytomegalovirus infection in Gambian infants leads to profound CD8 T-cell differentiation. J. Virol. 2007. 81: 57665776.
  • 19
    Nebbia, G., Mattes, F. M., Smith, C., Hainsworth, E., Kopycinski, J., Burroughs, A., Griffiths, P. D. et al., Polyfunctional cytomegalovirus-specific CD4+ and pp65 CD8+ T cells protect against high-level replication after liver transplantation. Am. J. Transplant. 2008. 8: 25902599.
  • 20
    Cannon, M. J., Hyde, T. B. and Schmid, D. S., Review of cytomegalovirus shedding in bodily fluids and relevance to congenital cytomegalovirus infection. Rev. Med. Virol. 2011. 21: 240255.
  • 21
    Derhovanessian, E., Maier, A. B., Hahnel, K., Beck, R., de Craen, A. J., Slagboom, E. P., Westendorp, R. G. et al., Infection with cytomegalovirus but not herpes simplex virus induces the accumulation of late-differentiated CD4+ and CD8+ T-cells in humans. J. Gen. Virol. 2011. 92: 27462756.
  • 22
    Derhovanessian, E., Larbi, A. and Pawelec, G., Biomarkers of human immunosenescence: impact of Cytomegalovirus infection. Curr. Opin. Immunol. 2009. 21: 440445.
  • 23
    Ben-Smith, A., Gorak-Stolinska, P., Floyd, S., Weir, R. E., Lalor, M. K., Mvula, H., Crampin, A. C. et al., Differences between naive and memory T cell phenotype in Malawian and UK adolescents: a role for Cytomegalovirus? BMC Infect Dis. 2008. 8: 139.
  • 24
    Mack, U., Migliori, G. B., Sester, M., Rieder, H. L., Ehlers, S., Goletti, D., Bossink, A. et al., LTBI: latent tuberculosis infection or lasting immune responses to M. tuberculosis? A TBNET consensus statement. Eur. Respir. J. 2009. 33: 956973.
  • 25
    Basu Roy, R., Sotgiu, G., Altet-Gomez, N., Tsolia, M., Ruga, E., Velizarova, S. and Kampmann, B., Identifying predictors of interferon-gamma release assay results in pediatric latent tuberculosis: a protective role of bacillus Calmette-Guerin? A pTB-NET collaborative study. Am. J. Respir. Crit. Care Med. 2012. 186: 378384.
  • 26
    Markova, R., Drenska, R., Minchev, P., Todorova, Y., Ciccozzi, M. and Amicosante, M., Association of age with the level of response in the QuantiFERON-TB Gold In-Tube assay for children with active tuberculosis. New Microbiol. 2011. 34: 8185.
  • 27
    Kampmann, B., Whittaker, E., Williams, A., Walters, S., Gordon, A., Martinez-Alier, N., Williams, B. et al., Interferon-gamma release assays do not identify more children with active tuberculosis than the tuberculin skin test. Eur. Respir. J. 2009. 33: 13741382.
  • 28
    Detjen, A. K., Keil, T., Roll, S., Hauer, B., Mauch, H., Wahn, U. and Magdorf, K., Interferon-gamma release assays improve the diagnosis of tuberculosis and nontuberculous mycobacterial disease in children in a country with a low incidence of tuberculosis. Clin. Infect Dis. 2007. 45: 322328.
  • 29
    Lighter, J., Rigaud, M., Eduardo, R., Peng, C. H. and Pollack, H., Latent tuberculosis diagnosis in children by using the QuantiFERON-TB Gold In-Tube test. Pediatrics 2009. 123: 3037.
  • 30
    Haustein, T., Ridout, D. A., Hartley, J. C., Thaker, U., Shingadia, D., Klein, N. J., Novelli, V. et al., The likelihood of an indeterminate test result from a whole-blood interferon-gamma release assay for the diagnosis of Mycobacterium tuberculosis infection in children correlates with age and immune status. Pediatr. Infect Dis. J. 2009. 28: 669673.
  • 31
    Bergamini, B. M., Losi, M., Vaienti, F., D'Amico, R., Meccugni, B., Meacci, M., De Giovanni, D. et al., Performance of commercial blood tests for the diagnosis of latent tuberculosis infection in children and adolescents. Pediatrics 2009. 123: e419e424.
  • 32
    Ferrara, G., Losi, M., D'Amico, R., Roversi, P., Piro, R., Meacci, M., Meccugni, B. et al., Use in routine clinical practice of two commercial blood tests for diagnosis of infection with Mycobacterium tuberculosis: a prospective study. Lancet 2006. 367: 13281334.
  • 33
    Lagrou, K., Bodeus, M., Van Ranst, M. and Goubau, P., Evaluation of the new architect cytomegalovirus immunoglobulin M (IgM), IgG, and IgG avidity assays. J. Clin. Microbiol. 2009. 47: 16951699.
  • 34
    Adler, S. P., Cytomegalovirus transmission and child day care. Adv. Pediatr. Infect Dis. 1992. 7: 109122.
  • 35
    Schlesinger, Y., Halle, D., Eidelman, A. I., Reich, D., Dayan, D., Rudensky, B., Raveh, D. et al., Urine polymerase chain reaction as a screening tool for the detection of congenital cytomegalovirus infection. Arch. Dis. Child Fetal Neonatal Ed. 2003. 88: F371F374.
  • 36
    Melish, M. E. and Hanshaw, J. B., Congenital cytomegalovirus infection. Developmental progress of infants detected by routine screening. Am. J. Dis. Child. 1973. 126: 190194.
  • 37
    Vilibic-Cavlek, T., Ljubin-Sternak, S., Vojnovic, G., Sviben, M. and Mlinaric-Galinovic, G., The role of IgG avidity in diagnosis of cytomegalovirus infection in newborns and infants. Coll. Antropol. 2012. 36: 297300.
  • 38
    Patel, M., Stefanidou, M., Long, C. B., Fazzari, M. J., Tesfa, L., Del Rio, M., Lamour, J. et al., Dynamics of cell-mediated immune responses to cytomegalovirus in pediatric transplantation recipients. Pediatr. Transplant. 2012. 16: 1828.
  • 39
    Schmidt, T., Dirks, J., Enders, M., Gartner, B. C., Uhlmann-Schiffler, H., Sester, U. and Sester, M., CD4+ T-cell immunity after pandemic influenza vaccination cross-reacts with seasonal antigens and functionally differs from active influenza infection. Eur. J. Immunol. 2012. 42: 17551766.
  • 40
    Landis, J. R. and Koch, G. G., The measurement of observer agreement for categorical data. Biometrics 1977. 33: 159174.