• 1
    Lanier, L. L., Up on the tightrope: natural killer cell activation and inhibition. Nat. Immunol. 2008. 9: 495502.
  • 2
    Nguyen, K. B., Salazar-Mather, T. P., Dalod, M. Y., Van Deusen, J. B., Wei, X. Q., Liew, F. Y., Caligiuri, M. A. et al., Coordinated and distinct roles for IFN-alpha beta, IL-12, and IL-15 regulation of NK cell responses to viral infection. J. Immunol. 2002. 169: 42794287.
  • 3
    Akira, S., The role of IL-18 in innate immunity. Curr. Opin. Immunol. 2000. 12: 5963.
  • 4
    Marcoe, J. P., Lim, J. R., Schaubert, K. L., Fodil-Cornu, N., Matka, M., McCubbrey, A. L., Farr, A. R. et al., TGF-beta is responsible for NK cell immaturity during ontogeny and increased susceptibility to infection during mouse infancy. Nat. Immunol. 2012. 13: 843850.
  • 5
    Vidal, S. M., Khakoo, S. I. and Biron, C. A., Natural killer cell responses during viral infections: flexibility and conditioning of innate immunity by experience. Curr. Opin. Virol. 2011. 1: 497512.
  • 6
    Lodoen, M. B. and Lanier, L. L., Natural killer cells as an initial defense against pathogens. Curr. Opin. Immunol. 2006. 18: 391398.
  • 7
    Scalzo, A. A., Successful control of viruses by NK cells—a balance of opposing forces? Trends Microbiol. 2002. 10: 470474.
  • 8
    van Dommelen, S. L., Sumaria, N., Schreiber, R. D., Scalzo, A. A., Smyth, M. J. and Degli-Esposti, M. A., Perforin and granzymes have distinct roles in defensive immunity and immunopathology. Immunity 2006. 25: 835848.
  • 9
    Sumaria, N., van Dommelen, S. L., Andoniou, C. E., Smyth, M. J., Scalzo, A. A. and Degli-Esposti, M. A., The roles of interferon-gamma and perforin in antiviral immunity in mice that differ in genetically determined NK-cell-mediated antiviral activity. Immunol. Cell Biol. 2009. 87: 559566.
  • 10
    Orange, J. S., Wang, B., Terhorst, C. and Biron, C. A., Requirement for natural killer cell-produced interferon gamma in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J. Exp. Med. 1995. 182: 10451056.
  • 11
    Sato, K., Hida, S., Takayanagi, H., Yokochi, T., Kayagaki, N., Takeda, K., Yagita, H. et al., Antiviral response by natural killer cells through TRAIL gene induction by IFN-alpha/beta. Eur. J. Immunol. 2001. 31: 31383146.
  • 12
    Trinchieri, G., Biology of natural killer cells. Adv. Immunol. 1989. 47: 187376.
  • 13
    Santoni, A., Carlino, C. and Gismondi, A., Uterine NK cell development, migration and function. Reprod. Biomed. Online 2008. 16: 202210.
  • 14
    Jonjic, S., Mutter, W., Weiland, F., Reddehase, M. J. and Koszinowski, U. H., Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4+ T lymphocytes. J. Exp. Med. 1989. 169: 11991212.
  • 15
    McWhorter, A. R., Smith, L. M., Masters, L. L., Chan, B., Shellam, G. R. and Redwood, A. J., Natural Killer cell dependent within-host competition arises during multiple MCMV infection: consequences for viral transmission and evolution. PLoS Pathog. 2013. 9: e1003111.
  • 16
    Carroll, V. A., Lundgren, A., Wei, H., Sainz, S., Tung, K. S. and Brown, M. G., Natural killer cells regulate murine cytomegalovirus-induced sialadenitis and salivary gland disease. J. Virol. 2012. 86: 21322142.
  • 17
    Li, F., Zhu, H., Sun, R., Wei, H. and Tian, Z., Natural killer cells are involved in acute lung immune injury caused by respiratory syncytial virus infection. J. Virol. 2012. 86: 22512258.
  • 18
    Gazit, R., Gruda, R., Elboim, M., Arnon, T. I., Katz, G., Achdout, H., Hanna, J. et al., Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat. Immunol. 2006. 7: 517523.
  • 19
    Abdul-Careem, M. F., Mian, M. F., Yue, G., Gillgrass, A., Chenoweth, M. J., Barra, N. G., Chew, M. V. et al., Critical role of natural killer cells in lung immunopathology during influenza infection in mice. J. Infect. Dis. 2012. 206: 167177.
  • 20
    Bukowski, J. F., Woda, B. A., Habu, S., Okumura, K. and Welsh, R. M., Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J. Immunol. 1983. 131: 15311538.
  • 21
    Waggoner, S. N., Cornberg, M., Selin, L. K. and Welsh, R. M., Natural killer cells act as rheostats modulating antiviral T cells. Nature 2011. 481: 394398.
  • 22
    Mitrovic, M., Arapovic, J., Jordan, S., Fodil-Cornu, N., Ebert, S., Vidal, S. M., Krmpotic, A. et al., The NK cell response to mouse cytomegalovirus infection affects the level and kinetics of the early CD8(+) T-cell response. J. Virol. 2011. 86: 21652175.
  • 23
    Andrews, D. M., Estcourt, M. J., Andoniou, C. E., Wikstrom, M. E., Khong, A., Voigt, V., Fleming, P. et al., Innate immunity defines the capacity of antiviral T cells to limit persistent infection. J. Exp. Med. 2010. 207: 13331343.
  • 24
    Lee, S. H., Kim, K. S., Fodil-Cornu, N., Vidal, S. M. and Biron, C. A., Activating receptors promote NK cell expansion for maintenance, IL-10 production, and CD8 T cell regulation during viral infection. J. Exp. Med. 2009. 206: 22352251.
  • 25
    Stadnisky, M. D., Xie, X., Coats, E. R., Bullock, T. N. and Brown, M. G., Self MHC class I licensed NK cells enhance adaptive CD8 T cell viral immunity. Blood 2011. 117: 51335141.
  • 26
    Su, H. C., Nguyen, K. B., Salazar-Mather, T. P., Ruzek, M. C., Dalod, M. Y. and Biron, C. A., NK cell functions restrain T cell responses during viral infections. Eur. J. Immunol. 2001. 31: 30483055.
  • 27
    Robbins, S. H., Bessou, G., Cornillon, A., Zucchini, N., Rupp, B., Ruzsics, Z., Sacher, T. et al., Natural killer cells promote early CD8 T cell responses against cytomegalovirus. PLoS Pathog. 2007. 3: e123.
  • 28
    Igarashi, H., Gregory, S. C., Yokota, T., Sakaguchi, N. and Kincade, P. W., Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 2002. 17: 117130.
  • 29
    Borghesi, L., Hsu, L. Y., Miller, J. P., Anderson, M., Herzenberg, L., Schlissel, M. S., Allman, D. et al., B lineage-specific regulation of V(D)J recombinase activity is established in common lymphoid progenitors. J. Exp. Med. 2004. 199: 491502.
  • 30
    Natarajan, K., Dimasi, N., Wang, J., Mariuzza, R. A. and Margulies, D. H., Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Annu. Rev. Immunol. 2002. 20: 853885.
  • 31
    Yokoyama, W. M. and Plougastel, B. F., Immune functions encoded by the natural killer gene complex. Nat. Rev. Immunol. 2003. 3: 304316.
  • 32
    Pyzik, M., Gendron-Pontbriand, E. M. and Vidal, S. M., The impact of Ly49-NK cell-dependent recognition of MCMV infection on innate and adaptive immune responses. J. Biomed. Biotechnol. 2011. 2011: 641702.
  • 33
    Ortaldo, J. R. and Young, H. A., Mouse Ly49 NK receptors: balancing activation and inhibition. Mol. Immunol. 2005. 42: 445450.
  • 34
    Lanier, L. L., NK cell recognition. Annu. Rev. Immunol. 2005. 23: 225274.
  • 35
    Fang, M., Orr, M. T., Spee, P., Egebjerg, T., Lanier, L. L. and Sigal, L. J., CD94 is essential for NK cell-mediated resistance to a lethal viral disease. Immunity 2011. 34: 579589.
  • 36
    Williams, K. J., Wilson, E., Davidson, C. L., Aguilar, O. A., Fu, L., Carlyle, J. R. and Burshtyn, D. N., Poxvirus infection-associated downregulation of C-type lectin-related-b prevents NK cell inhibition by NK receptor protein-1B. J. Immunol. 2012. 188: 49804991.
  • 37
    Carlyle, J. R., Jamieson, A. M., Gasser, S., Clingan, C. S., Arase, H. and Raulet, D. H., Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proc. Natl. Acad. Sci. USA 2004. 101: 35273532.
  • 38
    Zafirova, B., Wensveen, F. M., Gulin, M. and Polic, B., Regulation of immune cell function and differentiation by the NKG2D receptor. Cell. Mol. Life Sci. 2011. 68: 35193529.
  • 39
    Seidel, E., Glasner, A. and Mandelboim, O., Virus-mediated inhibition of natural cytotoxicity receptor recognition. Cell. Mol. Life Sci. 2012. 69: 39113920.
  • 40
    Stanietsky, N. and Mandelboim, O., Paired NK cell receptors controlling NK cytotoxicity. FEBS Lett. 2010. 584: 48954900.
  • 41
    Lanier, L. L., NK cell receptors. Annu. Rev. Immunol. 1998. 16: 359393.
  • 42
    Karre, K., Ljunggren, H. G., Piontek, G. and Kiessling, R., Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 1986. 319: 675678.
  • 43
    Hengel, H., Reusch, U., Gutermann, A., Ziegler, H., Jonjic, S., Lucin, P. and Koszinowski, U. H., Cytomegaloviral control of MHC class I function in the mouse. Immunol. Rev. 1999. 168: 167176.
  • 44
    Ziegler, H., Thäle, R., Lucin, P., Muranyi, W., Flohr, T., Hengel, H., Farrell, H. et al., A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 1997. 6: 5766.
  • 45
    Reusch, U., Muranyi, W., Lucin, P., Burgert, H. G., Hengel, H. and Koszinowski, U. H., A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO J. 1999. 18: 10811091.
  • 46
    Kleijnen, M. F., Huppa, J. B., Lucin, P., Mukherjee, S., Farrell, H., Campbell, A. E., Koszinowski, U. H. et al., A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO J. 1997. 16: 685694.
  • 47
    Holtappels, R., Gillert-Marien, D., Thomas, D., Podlech, J., Deegen, P., Herter, S., Oehrlein-Karpi, S. A. et al., Cytomegalovirus encodes a positive regulator of antigen presentation. J. Virol. 2006. 80: 76137624.
  • 48
    Babic, M., Pyzik, M., Zafirova, B., Mitrovic, M., Butorac, V., Lanier, L. L., Krmpotic, A. et al., Cytomegalovirus immunoevasin reveals the physiological role of “missing self” recognition in natural killer cell dependent virus control in vivo. J. Exp. Med. 2010. 207: 26632673.
  • 49
    Byun, M., Verweij, M. C., Pickup, D. J., Wiertz, E. J., Hansen, T. H. and Yokoyama, W. M., Two mechanistically distinct immune evasion proteins of cowpox virus combine to avoid antiviral CD8 T cells. Cell Host Microbe 2009. 6: 422432.
  • 50
    Byun, M., Wang, X., Pak, M., Hansen, T. H. and Yokoyama, W. M., Cowpox virus exploits the endoplasmic reticulum retention pathway to inhibit MHC class I transport to the cell surface. Cell Host Microbe 2007. 2: 306315.
  • 51
    Smith, H. R., Heusel, J. W., Mehta, I. K., Kim, S., Dorner, B. G., Naidenko, O. V., Iizuka, K. et al., Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl. Acad. Sci. USA 2002. 99: 88268831.
  • 52
    Jonjic, S., Babic, M., Polic, B. and Krmpotic, A., Immune evasion of natural killer cells by viruses. Curr. Opin. Immunol. 2008. 20: 3038.
  • 53
    Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B. and Lanier, L. L., Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 2002. 296: 13231326.
  • 54
    Revilleza, M. J., Wang, R., Mans, J., Hong, M., Natarajan, K. and Margulies, D. H., How the virus outsmarts the host: function and structure of cytomegalovirus MHC-I-like molecules in the evasion of natural killer cell surveillance. J. Biomed. Biotechnol. 2011. 2011: 724607.
  • 55
    Vidal, S., Krmpotic, A., Pyzik, M. and Jonjic, S., Innate immunity to cytomegalovirus in the murine model. In Reddehase, M. J. (Ed.), Cytomegaloviruses — From Molecular Pathogenesis to Intervention. Caister Academic Press, Norwich 2013.
  • 56
    Kim, S., Poursine-Laurent, J., Truscott, S. M., Lybarger, L., Song, Y. J., Yang, L., French, A. R. et al., Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 2005. 436: 709713.
  • 57
    Fernandez, N. C., Treiner, E., Vance, R. E., Jamieson, A. M., Lemieux, S. and Raulet, D. H., A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 2005. 105: 44164423.
  • 58
    Orr, M. T., Murphy, W. J. and Lanier, L. L., ‘Unlicensed’ natural killer cells dominate the response to cytomegalovirus infection. Nat. Immunol. 2010. 11: 321327.
  • 59
    Akkaya, M. and Barclay, A. N., How do pathogens drive the evolution of paired receptors? Eur. J. Immunol. 2013. 43: 303313.
  • 60
    Daniels, K. A., Devora, G., Lai, W. C., O'Donnell, C. L., Bennett, M. and Welsh, R. M., Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49H. J. Exp. Med. 2001. 194: 2944.
  • 61
    Brown, M. G., Dokun, A. O., Heusel, J. W., Smith, H. R., Beckman, D. L., Blattenberger, E. A., Dubbelde, C. E. et al., Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 2001. 292: 934937.
  • 62
    Lee, S. H., Girard, S., Macina, D., Busa, M., Zafer, A., Belouchi, A., Gros, P. et al., Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat. Genet. 2001. 28: 4245.
  • 63
    Adams, E. J., Juo, Z. S., Venook, R. T., Boulanger, M. J., Arase, H., Lanier, L. L. and Garcia, K. C., Structural elucidation of the m157 mouse cytomegalovirus ligand for Ly49 natural killer cell receptors. Proc. Natl. Acad. Sci. USA 2007. 104: 1012810133.
  • 64
    Kielczewska, A., Pyzik, M., Sun, T., Krmpotic, A., Lodoen, M. B., Munks, M. W., Babic, M. et al., Ly49P recognition of cytomegalovirus-infected cells expressing H2-Dk and CMV-encoded m04 correlates with the NK cell antiviral response. J. Exp. Med. 2009. 206: 515523.
  • 65
    Pyzik, M., Charbonneau, B., Gendron-Pontbriand, E. M., Babic, M., Krmpotic, A., Jonjic, S. and Vidal, S. M., Distinct MHC class I-dependent NK cell-activating receptors control cytomegalovirus infection in different mouse strains. J. Exp. Med. 2011. 208: 11051117.
  • 66
    Fodil-Cornu, N., Loredo-Osti, J. C. and Vidal, S. M., NK cell receptor/H2-Dk-dependent host resistance to viral infection is quantitatively modulated by H2q inhibitory signals. PLoS Genet. 2011. 7: e1001368.
  • 67
    Champsaur, M. and Lanier, L. L., Effect of NKG2D ligand expression on host immune responses. Immunol. Rev. 2010. 235: 267285.
  • 68
    Cerwenka, A. and Lanier, L. L., NKG2D ligands: unconventional MHC class I-like molecules exploited by viruses and cancer. Tissue Antigens 2003. 61: 335343.
  • 69
    Walsh, K. B., Lanier, L. L. and Lane, T. E., NKG2D receptor signaling enhances cytolytic activity by virus-specific CD8+ T cells: evidence for a protective role in virus-induced encephalitis. J. Virol. 2008. 82: 30313044.
  • 70
    Lisnic, V. J., Krmpotic, A. and Jonjic, S., Modulation of natural killer cell activity by viruses. Curr. Opin. Microbiol. 2010. 13: 530539.
  • 71
    Slavuljica, I., Busche, A., Babic, M., Mitrovic, M., Gasparovic, I., Cekinovic, D., Markova Car, E. et al., Recombinant mouse cytomegalovirus expressing a ligand for the NKG2D receptor is attenuated and has improved vaccine properties. J. Clin. Invest. 2010. 120: 45324545.
  • 72
    Campbell, J. A., Trossman, D. S., Yokoyama, W. M. and Carayannopoulos, L. N., Zoonotic orthopoxviruses encode a high-affinity antagonist of NKG2D. J. Exp. Med. 2007. 204: 13111317.
  • 73
    Mandelboim, O., Lieberman, N., Lev, M., Paul, L., Arnon, T. I., Bushkin, Y., Davis, D. M. et al., Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 2001. 409: 10551060.
  • 74
    Vankayalapati, R., Wizel, B., Weis, S. E., Safi, H., Lakey, D. L., Mandelboim, O., Samten, B. et al., The NKp46 receptor contributes to NK cell lysis of mononuclear phagocytes infected with an intracellular bacterium. J. Immunol. 2002. 168: 34513457.
  • 75
    Magri, G., Muntasell, A., Romo, N., Saez-Borderias, A., Pende, D., Geraghty, D. E., Hengel, H. et al., NKp46 and DNAM-1 NK-cell receptors drive the response to human cytomegalovirus-infected myeloid dendritic cells overcoming viral immune evasion strategies. Blood 2010. 117: 848856.
  • 76
    Moretta, A., Biassoni, R., Bottino, C., Mingari, M. C. and Moretta, L., Natural cytotoxicity receptors that trigger human NK-cell-mediated cytolysis. Immunol. Today 2000. 21: 228234.
  • 77
    Elhaik-Goldman, S., Kafka, D., Yossef, R., Hadad, U., Elkabets, M., Vallon-Eberhard, A., Hulihel, L. et al., The natural cytotoxicity receptor 1 contribution to early clearance of Streptococcus pneumoniae and to natural killer-macrophage cross talk. PLoS One 2011. 6: e23472.
  • 78
    Glasner, A., Zurunic, A., Meningher, T., Lenac Rovis, T., Tsukerman, P., Bar-On, Y., Yamin, R. et al., Elucidating the mechanisms of influenza virus recognition by Ncr1. PLoS One 2012. 7: e36837.
  • 79
    Mao, H., Tu, W., Liu, Y., Qin, G., Zheng, J., Chan, P. L., Lam, K. T. et al., Inhibition of human natural killer cell activity by influenza virions and hemagglutinin. J. Virol. 2010. 84: 41484157.
  • 80
    Narni-Mancinelli, E., Jaeger, B. N., Bernat, C., Fenis, A., Kung, S., De Gassart, A., Mahmood, S. et al., Tuning of natural killer cell reactivity by NKp46 and Helios calibrates T cell responses. Science 2012. 335: 344348.
  • 81
    Yu, X., Harden, K., Gonzalez, L. C., Francesco, M., Chiang, E., Irving, B., Tom, I. et al., The surface protein TIGITsuppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 2009. 10: 4857.
  • 82
    Stanietsky, N., Simic, H., Arapovic, J., Toporik, A., Levy, O., Novik, A., Levine, Z. et al., The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc. Natl. Acad. Sci. USA 2009. 106: 1785817863.
  • 83
    Boles, K. S., Vermi, W., Facchetti, F., Fuchs, A., Wilson, T. J., Diacovo, T. G., Cella, M. et al., A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. Eur. J. Immunol. 2009. 39: 695703.
  • 84
    Bottino, C., Castriconi, R., Pende, D., Rivera, P., Nanni, M., Carnemolla, B., Cantoni, C. et al., Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J. Exp. Med. 2003. 198: 557567.
  • 85
    Fuchs, A., Cella, M., Giurisato, E., Shaw, A. S. and Colonna, M., Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J. Immunol. 2004. 172: 39943998.
  • 86
    Stanietsky, N. and Mandelboim, O., Paired NK cell receptors controlling NK cytotoxicity. FEBS Lett. 2010. 584: 48954900.
  • 87
    Tomasec, P., Wang, E. C., Davison, A. J., Vojtesek, B., Armstrong, M., Griffin, C., McSharry, B. P. et al., Downregulation of natural killer cell-activating ligand CD155 by human cytomegalovirus UL141. Nat. Immunol. 2005. 6: 181188.
  • 88
    Iizuka, K., Naidenko, O. V., Plougastel, B. F., Fremont, D. H. and Yokoyama, W. M., Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nat. Immunol. 2003. 4: 801807.
  • 89
    Voigt, S., Mesci, A., Ettinger, J., Fine, J. H., Chen, P., Chou, W. and Carlyle, J. R., Cytomegalovirus evasion of innate immunity by subversion of the NKR-P1B:Clr-b missing-self axis. Immunity 2007. 26: 617627.
  • 90
    Biron, C. A., Yet another role for natural killer cells: cytotoxicity in immune regulation and viral persistence. Proc. Natl. Acad. Sci. USA 2012. 109: 18141815.
  • 91
    Ge, M. Q., Ho, A. W., Tang, Y., Wong, K. H., Chua, B. Y., Gasser, S. and Kemeny, D. M., NK cells regulate CD8+ T cell priming and dendritic cell migration during influenza A infection by IFN-gamma and perforin-dependent mechanisms. J. Immunol. 2012. 189: 20992109.
  • 92
    Mandaric, S., Walton, S. M., Rulicke, T., Richter, K., Girard-Madoux, M. J., Clausen, B. E., Zurunic, A. et al., IL-10 suppression of NK/DC crosstalk leads to poor priming of MCMV-specific CD4 T cells and prolonged MCMV persistence. PLoS Pathog. 2012. 8: e1002846.
  • 93
    Andrews, D. M., Andoniou, C. E., Granucci, F., Ricciardi-Castagnoli, P. and Degli-Esposti, M. A., Infection of dendritic cells by murine cytomegalovirus induces functional paralysis. Nat. Immunol. 2001. 2: 10771084.
  • 94
    Lang, P. A., Lang, K. S., Xu, H. C., Grusdat, M., Parish, I. A., Recher, M., Elford, A. R. et al., Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity. Proc. Natl. Acad. Sci. USA 2012. 109: 12101215.
  • 95
    O'Leary, J. G., Goodarzi, M., Drayton, D. L. and von Andrian, U. H., T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat. Immunol. 2006. 7: 507516.
  • 96
    Sun, J. C., Beilke, J. N. and Lanier, L. L., Adaptive immune features of natural killer cells. Nature 2009. 457: 557561.
  • 97
    Cooper, M. A., Elliott, J. M., Keyel, P. A., Yang, L., Carrero, J. A. and Yokoyama, W. M., Cytokine-induced memory-like natural killer cells. Proc. Natl. Acad. Sci. USA 2009. 106: 19151919.
  • 98
    Sun, J. C., Madera, S., Bezman, N. A., Beilke, J. N., Kaplan, M. H. and Lanier, L. L., Proinflammatory cytokine signaling required for the generation of natural killer cell memory. J. Exp. Med. 2012. 209: 947954.
  • 99
    Busche, A., Schmitz, S., Fleige, H., Robbins, S. H., Walzer, T., Stewart, C. A., Forster, R. et al., Genetic labeling reveals altered turnover and stability of innate lymphocytes in latent mouse cytomegalovirus infection. J. Immunol. 2011. 186: 29182925.
  • 100
    Lee, S. H., Fragoso, M. F. and Biron, C. A., Cutting edge: a novel mechanism bridging innate and adaptive immunity: IL-12 induction of CD25 to form high-affinity IL-2 receptors on NK cells. J. Immunol. 2012. 189: 27122716.
  • 101
    Bjorkstrom, N. K., Lindgren, T., Stoltz, M., Fauriat, C., Braun, M., Evander, M., Michaelsson, J. et al., Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J. Exp. Med. 2011. 208: 1321.
  • 102
    Paust, S., Gill, H. S., Wang, B. Z., Flynn, M. P., Moseman, E. A., Senman, B., Szczepanik, M. et al., Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat. Immunol. 2010. 11: 11271135.
  • 103
    Gillard, G. O., Bivas-Benita, M., Hovav, A. H., Grandpre, L. E., Panas, M. W., Seaman, M. S., Haynes, B. F. et al., Thy1+ NK [corrected] cells from vaccinia virus-primed mice confer protection against vaccinia virus challenge in the absence of adaptive lymphocytes. PLoS Pathog. 2011. 7: e1002141.
  • 104
    Bezman, N. A., Kim, C. C., Sun, J. C., Min-Oo, G., Hendricks, D. W., Kamimura, Y., Best, J. A. et al., Molecular definition of the identity and activation of natural killer cells. Nat. Immunol. 2012. 13: 10001009.