SEARCH

SEARCH BY CITATION

References

  • 1
    Zamaria, N., Alteration of polyunsaturated fatty acid status and metabolism in health and disease. Reprod. Nutr. Dev. 2004. 44: 273282.
  • 2
    Tvrzicka, E., Kremmyda, L. S., Stankova, B. and Zak, A., Fatty acids as biocompounds: their role in human metabolism, health and disease—a review. Part 1: classification, dietary sources and biological functions. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2011. 155: 117130.
  • 3
    Kremmyda, L. S., Tvrzicka, E., Stankova, B. and Zak, A., Fatty acids as biocompounds: their role in human metabolism, health and disease: a review. part 2: fatty acid physiological roles and applications in human health and disease. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2011. 155: 195218.
  • 4
    Harbige, L. S., Dietary n-6 and n-3 fatty acids in immunity and autoimmune disease. Proc. Nutr. Soc. 1998. 57: 555562.
  • 5
    Calder, P. C., Does early exposure to long chain polyunsaturated fatty acids provide immune benefits? J. Pediatr. 2010. 156: 869871.
  • 6
    Simopoulos, A. P., Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr. 2002. 21: 495505.
  • 7
    Thies, F., Nebe-von-Caron, G., Powell, J. R., Yaqoob, P., Newsholme, E. A. and Calder, P. C., Dietary supplementation with eicosapentaenoic acid, but not with other long-chain n-3 or n-6 polyunsaturated fatty acids, decreases natural killer cell activity in healthy subjects aged >55 y. Am. J. Clin. Nutr. 2001. 73: 539548.
  • 8
    Hardardottir, I. and Kinsella, J. E., Increasing the dietary (n-3) to (n-6) polyunsaturated fatty acid ratio increases tumor necrosis factor production by murine resident peritoneal macrophages without an effect on elicited peritoneal macrophages. J. Nutr. 1992. 122: 19421951.
  • 9
    Furse, R. K., Rossetti, R. G., Seiler, C. M. and Zurier, R. B., Oral administration of gammalinolenic acid, an unsaturated fatty acid with anti-inflammatory properties, modulates interleukin-1beta production by human monocytes. J. Clin. Immunol. 2002. 22: 8391.
  • 10
    Stulnig, T. M. and Zeyda, M., Immunomodulation by polyunsaturated fatty acids: impact on T-cell signaling. Lipids 2004. 39: 11711175.
  • 11
    Shaikh, S. R. and Edidin, M., Polyunsaturated fatty acids, membrane organization, T cells, and antigen presentation. Am. J. Clin. Nutr. 2006. 84: 12771289.
  • 12
    Brix, S., Lund, P., Kjaer, T. M., Straarup, E. M., Hellgren, L. I. and Frokiaer, H., CD4(+) T-cell activation is differentially modulated by bacteria-primed dendritic cells, but is generally down-regulated by n-3 polyunsaturated fatty acids. Immunology 2010. 129: 338350.
  • 13
    Zeyda, M., Saemann, M. D., Stuhlmeier, K. M., Mascher, D. G., Nowotny, P. N., Zlabinger, G. J., Waldhausl, W. and Stulnig, T. M., Polyunsaturated fatty acids block dendritic cell activation and function independently of NF-kappaB activation. J. Biol. Chem. 2005. 280: 1429314301.
  • 14
    Weatherill, A. R., Lee, J. Y., Zhao, L., Lemay, D. G., Youn, H. S. and Hwang, D. H., Saturated and polyunsaturated fatty acids reciprocally modulate dendritic cell functions mediated through TLR4. J. Immunol. 2005. 174: 53905397.
  • 15
    Greten, T. F., Manns, M. P. and Korangy, F., Myeloid derived suppressor cells in human diseases. Int. Immunopharmacol. 2011. 11: 802807.
  • 16
    Gabrilovich, D. I. and Nagaraj, S., Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009. 9: 162174.
  • 17
    Haile, L. A., von Wasielewski, R., Gamrekelashvili, J., Kruger, C., Bachmann, O., Westendorf, A. M., Buer, J. et al., Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology 2008. 135: 871881, 881.
  • 18
    Ochando, J. C. and Chen, S. H., Myeloid-derived suppressor cells in transplantation and cancer. Immunol. Res. 2012. 54: 275285.
  • 19
    Ostrand-Rosenberg, S. and Sinha, P., Myeloid-derived suppressor cells: linking inflammation and cancer. J. Immunol. 2009. 182: 44994506.
  • 20
    Youn, J. I., Nagaraj, S., Collazo, M. and Gabrilovich, D. I., Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 2008. 181: 57915802.
  • 21
    Peranzoni, E., Zilio, S., Marigo, I., Dolcetti, L., Zanovello, P., Mandruzzato, S. and Bronte, V., Myeloid-derived suppressor cell heterogeneity and subset definition. Curr. Opin. Immunol. 2010. 22: 238244.
  • 22
    Youn, J. I. and Gabrilovich, D. I., The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur. J. Immunol. 2010. 40: 29692975.
  • 23
    Solito, S., Bronte, V. and Mandruzzato, S., Antigen specificity of immune suppression by myeloid-derived suppressor cells. J. Leukoc. Biol. 2011. 90: 3136.
  • 24
    Nagaraj, S., Schrum, A. G., Cho, H. I., Celis, E. and Gabrilovich, D. I., Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J. Immunol. 2010. 184: 31063116.
  • 25
    Condamine, T. and Gabrilovich, D. I., Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 2011. 32: 1925.
  • 26
    Sonda, N., Chioda, M., Zilio, S., Simonato, F. and Bronte, V., Transcription factors in myeloid-derived suppressor cell recruitment and function. Curr. Opin. Immunol. 2011. 23: 279285.
  • 27
    Marigo, I., Bosio, E., Solito, S., Mesa, C., Fernandez, A., Dolcetti, L., Ugel, S. et al., Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 2010. 32: 790802.
  • 28
    Corzo, C. A., Condamine, T., Lu, L., Cotter, M. J., Youn, J. I., Cheng, P., Cho, H. I. et al., HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J. Exp. Med. 2010. 207: 24392453.
  • 29
    Corzo, C. A., Cotter, M. J., Cheng, P., Cheng, F., Kusmartsev, S., Sotomayor, E., Padhya, T. et al., Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J. Immunol. 2009. 182: 56935701.
  • 30
    Cheng, P., Corzo, C. A., Luetteke, N., Yu, B., Nagaraj, S., Bui, M. M., Ortiz, M. et al., Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J. Exp. Med. 2008. 205: 22352249.
  • 31
    Nefedova, Y., Cheng, P., Gilkes, D., Blaskovich, M., Beg, A. A., Sebti, S. M. and Gabrilovich, D. I., Activation of dendritic cells via inhibition of Jak2/STAT3 signaling. J. Immunol. 2005. 175: 43384346.
  • 32
    Nefedova, Y., Nagaraj, S., Rosenbauer, A., Muro-Cacho, C., Sebti, S. M. and Gabrilovich, D. I., Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res. 2005. 65: 95259535.
  • 33
    Selvaraj, R. K., Shanmugasundaram, R. and Klasing, K. C., Effects of dietary lutein and PUFA on PPAR and RXR isomer expression in chickens during an inflammatory response. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2010. 157: 198203.
  • 34
    Zapata-Gonzalez, F., Rueda, F., Petriz, J., Domingo, P., Villarroya, F., Diaz-Delfin, J., de Madariaga, M. A. and Domingo, J. C., Human dendritic cell activities are modulated by the omega-3 fatty acid, docosahexaenoic acid, mainly through PPAR (gamma): RXR heterodimers: comparison with other polyunsaturated fatty acids. J. Leukoc. Biol. 2008. 84: 11721182.
  • 35
    Vitale, G., Zappavigna, S., Marra, M., Dicitore, A., Meschini, S., Condello, M., Arancia, G. et al., The PPAR-gamma agonist troglitazone antagonizes survival pathways induced by STAT-3 in recombinant interferon-beta treated pancreatic cancer cells. Biotechnol. Adv. 2012. 30: 169184.
  • 36
    Denys, A., Hichami, A. and Khan, N. A., n-3 PUFAs modulate T-cell activation via protein kinase C-alpha and -epsilon and the NF-kappaB signaling pathway. J. Lipid Res. 2005. 46: 752758.
  • 37
    Obermajer, N., Muthuswamy, R., Lesnock, J., Edwards, R. P. and Kalinski, P., Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 2011. 118: 54985505.
  • 38
    Fujita, M., Kohanbash, G., Fellows-Mayle, W., Hamilton, R. L., Komohara, Y., Decker, S. A., Ohlfest, J. R. and Okada, H., COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res. 2011. 71: 26642674.
  • 39
    Stulnig, T. M., Immunomodulation by polyunsaturated fatty acids: mechanisms and effects. Int. Arch. Allergy Immunol. 2003. 132: 310321.
  • 40
    Zeyda, M., Szekeres, A. B., Saemann, M. D., Geyeregger, R., Stockinger, H., Zlabinger, G. J., Waldhausl, W. and Stulnig, T. M., Suppression of T cell signaling by polyunsaturated fatty acids: selectivity in inhibition of mitogen-activated protein kinase and nuclear factor activation. J. Immunol. 2003. 170: 60336039.
  • 41
    Miles, E. A. and Calder, P. C., Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br. J. Nutr. 2012. 107 (Suppl 2): S171S184.
  • 42
    Draper, E., Reynolds, C. M., Canavan, M., Mills, K. H., Loscher, C. E. and Roche, H. M., Omega-3 fatty acids attenuate dendritic cell function via NF-kappaB independent of PPARgamma. J. Nutr. Biochem. 2011. 22: 784790.
  • 43
    Rose, D. P., Effects of dietary fatty acids on breast and prostate cancers: evidence from in vitro experiments and animal studies. Am. J. Clin. Nutr. 1997. 66: 1513S1522S.
  • 44
    Leitzmann, M. F., Stampfer, M. J., Michaud, D. S., Augustsson, K., Colditz, G. C., Willett, W. C. and Giovannucci, E. L., Dietary intake of n-3 and n-6 fatty acids and the risk of prostate cancer. Am. J. Clin. Nutr. 2004. 80: 204216.
  • 45
    Zhou, J., Cheng, P., Youn, J. I., Cotter, M. J. and Gabrilovich, D. I., Notch and wingless signaling cooperate in regulation of dendritic cell differentiation. Immunity 2009. 30: 845859.
  • 46
    Cai, W., Qin, A., Guo, P., Yan, D., Hu, F., Yang, Q., Xu, M. et al., Clinical significance and functional studies of myeloid-derived suppressor cells in chronic hepatitis C patients. J. Clin. Immunol. 2013. 33: 798808.
  • 47
    Qin, A., Cai, W., Pan, T., Wu, K., Yang, Q., Wang, N., Liu, Y. et al., Expansion of monocytic myeloid-derived suppressor cells dampens T cell function in HIV-1-seropositive individuals. J. Virol. 2013. 87: 14771490.