• 1
    Compston, A. and Coles, A., Multiple sclerosis. Lancet 2008. 372: 15021517.
  • 2
    Polman, C. H., O'Connor, P. W., Havrdova, E., Hutchinson, M., Kappos, L., Miller, D. H., Phillips, J. T. et al., A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 2006. 354: 899910.
  • 3
    Kappos, L., Radue, E. W., O'Connor, P., Polman, C., Hohlfeld, R., Calabresi, P., Selmaj, K. et al., A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 2010. 362: 387401.
  • 4
    Balashov, K. E., Rottman, J. B., Weiner, H. L. and Hancock, W. W., CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc. Natl. Acad. Sci. USA 1999. 96: 68736878.
  • 5
    Simpson, J. E., Newcombe, J., Cuzner, M. L. and Woodroofe, M. N., Expression of the interferon-gamma-inducible chemokines IP-10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathol. Appl. Neurobiol. 2000. 26: 133142.
  • 6
    Sorensen, T. L., Tani, M., Jensen, J., Pierce, V., Lucchinetti, C., Folcik, V. A., Qin, S. et al., Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J. Clin. Invest. 1999. 103: 807815.
  • 7
    Sorensen, T. L., Trebst, C., Kivisakk, P., Klaege, K. L., Majmudar, A., Ravid, R., Lassmann, H. et al., Multiple sclerosis: a study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system. J. Neuroimmunol. 2002. 127: 5968.
  • 8
    Ransohoff, R. M., Hamilton, T. A., Tani, M., Stoler, M. H., Shick, H. E., Major, J. A., Estes, M. L. et al., Astrocyte expression of mRNA encoding cytokines IP-10 and JE/MCP-1 in experimental autoimmune encephalomyelitis. FASEB J. 1993. 7: 592600.
  • 9
    O'Connor, R. A., Floess, S., Huehn, J., Jones, S. A. and Anderton, S. M., Foxp3(+) Treg cells in the inflamed CNS are insensitive to IL-6-driven IL-17 production. Eur. J. Immunol. 2012. 42: 11741179.
  • 10
    Sporici, R. and Issekutz, T. B., CXCR3 blockade inhibits T-cell migration into the CNS during EAE and prevents development of adoptively transferred, but not actively induced, disease. Eur. J. Immunol. 2010. 40: 27512761.
  • 11
    O'Connor, R. A., Li, X., Blumerman, S., Anderton, S. M., Noelle, R. J. and Dalton, D. K., Adjuvant immunotherapy of experimental autoimmune encephalomyelitis: immature myeloid cells expressing CXCL10 and CXCL16 attract CXCR3+CXCR6+ and myelin-specific T cells to the draining lymph nodes rather than the central nervous system. J. Immunol. 2012. 188: 20932101.
  • 12
    Loetscher, M., Loetscher, P., Brass, N., Meese, E. and Moser, B., Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization. Eur. J. Immunol. 1998. 28: 36963705.
  • 13
    Lord, G. M., Rao, R. M., Choe, H., Sullivan, B. M., Lichtman, A. H., Luscinskas, F. W. and Glimcher, L. H., T-bet is required for optimal proinflammatory CD4+ T-cell trafficking. Blood 2005. 106: 34323439.
  • 14
    Nakajima, C., Mukai, T., Yamaguchi, N., Morimoto, Y., Park, W. R., Iwasaki, M., Gao, P. et al., Induction of the chemokine receptor CXCR3 on TCR-stimulated T cells: dependence on the release from persistent TCR-triggering and requirement for IFN-gamma stimulation. Eur. J. Immunol. 2002. 32: 17921801.
  • 15
    Klein, R. S., Izikson, L., Means, T., Gibson, H. D., Lin, E., Sobel, R. A., Weiner, H. L. et al., IFN-inducible protein 10/CXC chemokine ligand 10-independent induction of experimental autoimmune encephalomyelitis. J. Immunol. 2004. 172: 550559.
  • 16
    Liu, L., Huang, D., Matsui, M., He, T. T., Hu, T., Demartino, J., Lu, B. et al., Severe disease, unaltered leukocyte migration, and reduced IFN-gamma production in CXCR3-/- mice with experimental autoimmune encephalomyelitis. J. Immunol. 2006. 176: 43994409.
  • 17
    Muller, M., Carter, S. L., Hofer, M. J., Manders, P., Getts, D. R., Getts, M. T., Dreykluft, A. et al., CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. J. Immunol. 2007. 179: 27742786.
  • 18
    Byrne, F. R., Winters, A., Brankow, D., Hu, S., Juan, T., Steavenson, S., Doellgast, G. et al., An antibody to IP-10 is a potent antagonist of cell migration in vitro and in vivo and does not affect disease in several animal models of inflammation. Autoimmunity 2009. 42: 171182.
  • 19
    Narumi, S., Kaburaki, T., Yoneyama, H., Iwamura, H., Kobayashi, Y. and Matsushima, K., Neutralization of IFN-inducible protein 10/CXCL10 exacerbates experimental autoimmune encephalomyelitis. Eur. J. Immunol. 2002. 32: 17841791.
  • 20
    Lalor, S. J., Dungan, L. S., Sutton, C. E., Basdeo, S. A., Fletcher, J. M. and Mills, K. H., Caspase-1-processed cytokines IL-1beta and IL-18 promote IL-17 production by gammadelta and CD4 T cells that mediate autoimmunity. J. Immunol. 2011. 186: 57385748.
  • 21
    Durelli, L., Conti, L., Clerico, M., Boselli, D., Contessa, G., Ripellino, P., Ferrero, B. et al., T-helper 17 cells expand in multiple sclerosis and are inhibited by interferon-beta. Ann. Neurol. 2009. 65: 499509.
  • 22
    Kebir, H., Ifergan, I., Alvarez, J. I., Bernard, M., Poirier, J., Arbour, N., Duquette, P. et al., Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann. Neurol. 2009. 66: 390402.
  • 23
    Kroenke, M. A., Carlson, T. J., Andjelkovic, A. V. and Segal, B. M., IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J. Exp. Med. 2008. 205: 15351541.
  • 24
    Mehling, M., Lindberg, R., Raulf, F., Kuhle, J., Hess, C., Kappos, L. and Brinkmann, V., Th17 central memory T cells are reduced by FTY720 in patients with multiple sclerosis. Neurology 2010. 75: 403410.
  • 25
    Ramgolam, V., Sha, Y., Jin, J., Zhang, X. and Markovic-Plese, S., IFN-beta inhibits human Th17 cell differentiation. J. Immunol. 2009. 183: 54185427.
  • 26
    Reboldi, A., Coisne, C., Baumjohann, D., Benvenuto, F., Bottinelli, D., Lira, S., Uccelli, A. et al., C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 2009. 10: 514523.
  • 27
    Stiles, L. N., Hosking, M. P., Edwards, R. A., Strieter, R. M. and Lane, T. E., Differential roles for CXCR3 in CD4+ and CD8+ T cell trafficking following viral infection of the CNS. Eur. J. Immunol. 2006. 36: 613622.
  • 28
    Hirota, K., Duarte, J. H., Veldhoen, M., Hornsby, E., Li, Y., Cua, D. J., Ahlfors, H. et al., Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 2011. 12: 255263.
  • 29
    Stiles, L. N., Liu, M. T., Kane, J. A. and Lane, T. E., CXCL10 and trafficking of virus-specific T cells during coronavirus-induced demyelination. Autoimmunity 2009. 42: 484491.
  • 30
    Berger, J. R. and Houff, S., Opportunistic infections and other risks with newer multiple sclerosis therapies. Ann. Neurol. 2009. 65: 367377.
  • 31
    Rudick, R. A. and Polman, C. H., Current approaches to the identification and management of breakthrough disease in patients with multiple sclerosis. Lancet Neurol. 2009. 8: 545559.
  • 32
    Bonecchi, R., Bianchi, G., Bordignon, P. P., D'Ambrosio, D., Lang, R., Borsatti, A., Sozzani, S. et al., Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 1998. 187: 129134.
  • 33
    Sallusto, F., Lanzavecchia, A. and Mackay, C. R., Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol. Today 1998. 19: 568574.
  • 34
    Kebir, H., Kreymborg, K., Ifergan, I., Dodelet-Devillers, A., Cayrol, R., Bernard, M., Giuliani, F. et al., Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 2007. 13: 11731175.
  • 35
    Lees, J., Iwakura, Y. and Russell, J., Host T cells are the main producers of IL-17 within the central nervous system during initiation of experimental autoimmune encephalomyelitis induced by adoptive transfer of Th1 cell lines. J. Immunol. 2008. 180: 80668072.
  • 36
    Koch, M. A., Tucker-Heard, G., Perdue, N. R., Killebrew, J. R., Urdahl, K. B. and Campbell, D. J., The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 2009. 10: 595602.
  • 37
    Sato, W., Tomita, A., Ichikawa, D., Lin, Y., Kishida, H., Miyake, S., Ogawa, M. et al., CCR2(+)CCR5(+) T cells produce matrix metalloproteinase-9 and osteopontin in the pathogenesis of multiple sclerosis. J. Immunol. 2012. 189: 50575065.
  • 38
    Glabinski, A. R., Tani, M., Tuohy, V. K., Tuthill, R. J. and Ransohoff, R. M., Central nervous system chemokine mRNA accumulation follows initial leukocyte entry at the onset of acute murine experimental autoimmune encephalomyelitis. Brain Behav. Immun. 1995. 9: 315330.
  • 39
    Glabinski, A. R., Tuohy, V. K. and Ransohoff, R. M., Expression of chemokines RANTES, MIP-1alpha and GRO-alpha correlates with inflammation in acute experimental autoimmune encephalomyelitis. Neuroimmunomodulation 1998. 5: 166171.
  • 40
    Tran, E. H., Kuziel, W. A. and Owens, T., Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1alpha or its CCR5 receptor. Eur. J. Immunol. 2000. 30: 14101415.
  • 41
    Gaupp, S., Pitt, D., Kuziel, W. A., Cannella, B. and Raine, C. S., Experimental autoimmune encephalomyelitis (EAE) in CCR2(−/−) mice: susceptibility in multiple strains. Am. J. Pathol. 2003. 162: 139150.
  • 42
    Kohler, R. E., Comerford, I., Townley, S., Haylock-Jacobs, S., Clark-Lewis, I. and McColl, S. R., Antagonism of the chemokine receptors CXCR3 and CXCR4 reduces the pathology of experimental autoimmune encephalomyelitis. Brain Pathol. 2008. 18: 504516.
  • 43
    Hancock, W. W., Lu, B., Gao, W., Csizmadia, V., Faia, K., King, J. A., Smiley, S. T. et al., Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J. Exp. Med. 2000. 192: 15151520.
  • 44
    Belperio, J. A., Keane, M. P., Burdick, M. D., Lynch, J. P., 3rd, Xue, Y. Y., Li, K., Ross, D. J. et al., Critical role for CXCR3 chemokine biology in the pathogenesis of bronchiolitis obliterans syndrome. J. Immunol. 2002. 169: 10371049.