SEARCH

SEARCH BY CITATION

References

  • 1
    Alves, N. L., Huntington, N. D., Rodewald, H. R. and Di Santo, J. P., Thymic epithelial cells: the multi-tasking framework of the T cell “cradle.” Trends Immunol. 2009. 30: 468474.
  • 2
    Anderson, G. and Takahama, Y., Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol. 2012. 33: 256263.
  • 3
    Petrie, H. T. and Zuniga-Pflucker, J. C., Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu. Rev. Immunol. 2007. 25: 649679.
  • 4
    van Ewijk, W., Shores, E. W. and Singer, A., Crosstalk in the mouse thymus. Immunol. Today 1994. 15: 214217.
  • 5
    Serwold, T., Ehrlich, L. I. and Weissman, I. L., Reductive isolation from bone marrow and blood implicates common lymphoid progenitors as the major source of thymopoiesis. Blood 2009. 113: 807815.
  • 6
    Hozumi, K., Mailhos, C., Negishi, N., Hirano, K., Yahata, T., Ando, K., Zuklys, S. et al., Delta-like 4 is indispensable in thymic environment specific for T cell development. J. Exp. Med. 2008. 205: 25072513.
  • 7
    Koch, U., Fiorini, E., Benedito, R., Besseyrias, V., Schuster-Gossler, K., Pierres, M., Manley, N. R. et al., Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J. Exp. Med. 2008. 205: 25152523.
  • 8
    Radtke, F., Wilson, A., Stark, G., Bauer, M., van Meerwijk, J., MacDonald, H. R. and Aguet, M., Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 1999. 10: 547558.
  • 9
    Feyerabend, T. B., Terszowski, G., Tietz, A., Blum, C., Luche, H., Gossler, A., Gale, N. W. et al., Deletion of Notch1 converts pro-T cells to dendritic cells and promotes thymic B cells by cell-extrinsic and cell-intrinsic mechanisms. Immunity 2009. 30: 6779.
  • 10
    Douagi, I., Colucci, F., Di Santo, J. P. and Cumano, A., Identification of the earliest prethymic bipotent T/NK progenitor in murine fetal liver. Blood 2002. 99: 463471.
  • 11
    Kawamoto, H. and Katsura, Y., A new paradigm for hematopoietic cell lineages: revision of the classical concept of the myeloid-lymphoid dichotomy. Trends Immunol. 2009. 30: 193200.
  • 12
    Michie, A. M., Carlyle, J. R., Schmitt, T. M., Ljutic, B., Cho, S. K., Fong, Q. and Zuniga-Pflucker, J. C., Clonal characterization of a bipotent T cell and NK cell progenitor in the mouse fetal thymus. J. Immunol. 2000. 164: 17301733.
  • 13
    Allison, J. P., Gamma delta T-cell development. Curr. Opin. Immunol. 1993. 5: 241246.
  • 14
    Raulet, D. H., Spencer, D. M., Hsiang, Y. H., Goldman, J. P., Bix, M., Liao, N. S., Zijstra, M. et al., Control of gamma delta T-cell development. Immunol. Rev. 1991. 120: 185204.
  • 15
    Rodewald, H. R., Thymus organogenesis. Annu. Rev. Immunol. 2008. 26: 355388.
  • 16
    Liu, C., Saito, F., Liu, Z., Lei, Y., Uehara, S., Love, P., Lipp, M. et al., Coordination between CCR7- and CCR9-mediated chemokine signals in prevascular fetal thymus colonization. Blood 2006. 108: 25312539.
  • 17
    Shibata, K., Yamada, H., Nakamura, R., Sun, X., Itsumi, M. and Yoshikai, Y., Identification of CD25+ gamma delta T cells as fetal thymus-derived naturally occurring IL-17 producers. J. Immunol. 2008. 181: 59405947.
  • 18
    Havran, W. L. and Allison, J. P., Origin of Thy-1+ dendritic epidermal cells of adult mice from fetal thymic precursors. Nature 1990. 344: 6870.
  • 19
    Desanti, G. E., Cowan, J. E., Baik, S., Parnell, S. M., White, A. J., Penninger, J. M., Lane, P. J. et al., Developmentally regulated availability of RANKL and CD40 ligand reveals distinct mechanisms of fetal and adult cross-talk in the thymus medulla. J. Immunol. 189: 55195526.
  • 20
    Harman, B. C., Jenkinson, W. E., Parnell, S. M., Rossi, S. W., Jenkinson, E. J. and Anderson, G., T/B lineage choice occurs prior to intrathymic Notch signaling. Blood 2005. 106: 886892.
  • 21
    Fiorini, E., Ferrero, I., Merck, E., Favre, S., Pierres, M., Luther, S. A. and MacDonald, H. R., Cutting edge: thymic crosstalk regulates delta-like 4 expression on cortical epithelial cells. J. Immunol. 2008. 181: 81998203.
  • 22
    Fiorini, E., Merck, E., Wilson, A., Ferrero, I., Jiang, W., Koch, U., Auderset, F. et al., Dynamic regulation of notch 1 and notch 2 surface expression during T cell development and activation revealed by novel monoclonal antibodies. J. Immunol. 2009. 183: 72127222.
  • 23
    Gordon, J., Xiao, S., Hughes, B., 3rd, Su, D. M., Navarre, S. P., Condie, B. G. and Manley, N. R., Specific expression of lacZ and cre recombinase in fetal thymic epithelial cells by multiplex gene targeting at the Foxn1 locus. BMC Dev. Biol. 2007. 7: 69.
  • 24
    Gray, D. H., Seach, N., Ueno, T., Milton, M. K., Liston, A., Lew, A. M., Goodnow, C. C. et al., Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 2006. 108: 37773785.
  • 25
    Seach, N., Ueno, T., Fletcher, A. L., Lowen, T., Mattesich, M., Engwerda, C. R., Scott, H. S. et al, The lymphotoxin pathway regulates Aire-independent expression of ectopic genes and chemokines in thymic stromal cells. J. Immunol. 2008. 180: 53845392.
  • 26
    Hamazaki, Y., Fujita, H., Kobayashi, T., Choi, Y., Scott, H. S., Matsumoto, M. and Minato, N., Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nat. Immunol. 2007. 8: 304311.
  • 27
    Klug, D. B., Carter, C., Gimenez-Conti, I. B. and Richie, E. R., Cutting edge: thymocyte-independent and thymocyte-dependent phases of epithelial patterning in the fetal thymus. J. Immunol. 2002. 169: 28422845.
  • 28
    De Creus, A., van Beneden, K., Stevenaert, F., Debacker, V., Plum, J. and Leclercq, G., Developmental and functional defects of thymic and epidermal V gamma 3 cells in IL-15-deficient and IFN regulatory factor-1-deficient mice. J. Immunol. 2002. 168: 64866493.
  • 29
    Peschon, J. J., Morrissey, P. J., Grabstein, K. H., Ramsdell, F. J., Maraskovsky, E., Gliniak, B. C., Park, L. S. et al., Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 1994. 180: 19551960.
  • 30
    Havran, W. L. and Allison, J. P., Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature 1988. 335: 443445.
  • 31
    Ito, K., Bonneville, M., Takagaki, Y., Nakanishi, N., Kanagawa, O., Krecko, E. G. and Tonegawa, S., Different gamma delta T-cell receptors are expressed on thymocytes at different stages of development. Proc. Natl. Acad. Sci. USA. 1989. 86: 631635.
  • 32
    Chien, Y. H., Iwashima, M., Wettstein, D. A., Kaplan, K. B., Elliott, J. F., Born, W. and Davis, M. M., T-cell receptor delta gene rearrangements in early thymocytes. Nature 1987. 330: 722727.
  • 33
    Garman, R. D., Doherty, P. J. and Raulet, D. H., Diversity, rearrangement, and expression of murine T cell gamma genes. Cell 1986. 45: 733742.
  • 34
    Ferrero, I., Wilson, A., Beermann, F., Held, W. and MacDonald, H. R., T cell receptor specificity is critical for the development of epidermal gammadelta T cells. J. Exp. Med. 2001. 194: 14731483.
  • 35
    Xiong, N., Kang, C. and Raulet, D. H., Positive selection of dendritic epidermal gammadelta T cell precursors in the fetal thymus determines expression of skin-homing receptors. Immunity 2004. 21: 121131.
  • 36
    Boyden, L. M., Lewis, J. M., Barbee, S. D., Bas, A., Girardi, M., Hayday, A. C., Tigelaar, R. E. et al., Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat. Genet. 2008. 40: 656662.
  • 37
    Leclercq, G., Plum, J., Nandi, D., De Smedt, M. and Allison, J. P., Intrathymic differentiation of V gamma 3 T cells. J. Exp. Med. 1993. 178: 309315.
  • 38
    Lewis, J. M., Girardi, M., Roberts, S. J., Barbee, S. D., Hayday, A. C. and Tigelaar, R. E., Selection of the cutaneous intraepithelial gammadelta(+) T cell repertoire by a thymic stromal determinant. Nat. Immunol. 2006. 7: 843850.
  • 39
    Mallick-Wood, C. A., Lewis, J. M., Richie, L. I., Owen, M. J., Tigelaar, R. E. and Hayday, A. C., Conservation of T cell receptor conformation in epidermal gammadelta cells with disrupted primary Vgamma gene usage. Science 1998. 279: 17291733.
  • 40
    Shibata, K., Yamada, H., Sato, T., Dejima, T., Nakamura, M., Ikawa, T., Hara, H. et al., Notch-Hes1 pathway is required for the development of IL-17-producing gammadelta T cells. Blood 2011. 118: 586593.
  • 41
    Jenkinson, W. E., Rossi, S. W., Jenkinson, E. J. and Anderson, G., Development of functional thymic epithelial cells occurs independently of lymphostromal interactions. Mech. Dev. 2005. 122: 12941299.
  • 42
    Klein, L., Klugmann, M., Nave, K. A., Tuohy, V. K. and Kyewski, B., Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nat. Med. 2000. 6: 5661.
  • 43
    Schuler, G. and Steinman, R. M., Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J. Exp. Med. 1985. 161: 526546.
  • 44
    Link, A., Vogt, T. K., Favre, S., Britschgi, M. R., Acha-Orbea, H., Hinz, B., Cyster, J. G. et al., Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 2007. 8: 12551265.
  • 45
    Ferrero, I., Mancini, S. J., Grosjean, F., Wilson, A., Otten, L. and MacDonald, H. R., TCRgamma silencing during alphabeta T cell development depends upon pre-TCR-induced proliferation. J. Immunol. 2006. 177: 60386043.