• 1
    Ryter, S. W., Alam, J. and Choi, A. M., Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol. Rev. 2006. 86: 583650.
  • 2
    Tsuchihashi, S., Fondevila, C. and Kupiec-Weglinski, J. W., Heme oxygenase system in ischemia and reperfusion injury. Ann. Transplant. 2004. 9: 8487.
  • 3
    Blancou, P., Tardif, V., Simon, T., Rémy, S., Carreno, L. J., Kalergis, A. M. and Anegon, I., Immunoregulatory properties of heme oxygenase-1. Methods Mol. Biol. 2011. 677: 24768.
  • 4
    Otterbein, L. E., Otterbein, S. L., Ifedigbo, E., Liu, F., Morse, D. E., Fearns, C., Ulevitch, R. J. et al., MKK3 mitogen-activated protein kinase pathway mediates carbon monoxide-induced protection against oxidant-induced lung injury. Am. J. Pathol. 2003. 163: 25552563.
  • 5
    Bouche, D., Chauveau, C., Roussel, J. C., Mathieu, P., Braudeau, C., Tesson, L., Soulillou, J. P. et al., Inhibition of graft arteriosclerosis development in rat aortas following heme oxygenase-1 gene transfer. Transpl. Immunol. 2002. 9: 235238.
  • 6
    Chauveau, C., Remy, S., Royer, P. J., Hill, M., Tanguy-Royer, S., Hubert, F. X., Tesson, L. et al., Heme oxygenase-1 expression inhibits dendritic cell maturation and proinflammatory function but conserves IL-10 expression. Blood 2005. 106: 16941702.
  • 7
    Chora, A. A., Fontoura, P., Cunha, A., Pais, T. F., Cardoso, S., Ho, P. P., Lee, L. Y. et al., Heme oxygenase-1 and carbon monoxide suppress autoimmune neuroinflammation. J. Clin. Invest. 2007. 117: 438447.
  • 8
    Xia, Z. W., Zhong, W. W., Xu, L. Q., Sun, J. L., Shen, Q. X., Wang, J. G., Shao, J. et al., Heme oxygenase-1-mediated CD4+CD25 high regulatory T cells suppress allergic airway inflammation. J. Immunol. 2006. 177: 59365945.
  • 9
    Braudeau, C., Bouchet, D., Tesson, L., Iyer, S., Remy, S., Buelow, R., Anegon, I. et al., Induction of long-term cardiac allograft survival by heme oxygenase-1 gene transfer. Gene Ther. 2004. 11: 701710.
  • 10
    Chauveau, C., Bouchet, D., Roussel, J. C., Mathieu, P., Braudeau, C., Renaudin, K., Tesson, L. et al., Gene transfer of heme oxygenase-1 and carbon monoxide delivery inhibit chronic rejection. Am. J. Transplant. 2002. 2: 581592.
  • 11
    Clarke, H. M., Shrivastava, S., Motterlini, R., Sawle, P., Chen, D. and Dorling, A., Donor HO-1 expression inhibits intimal hyperplasia in unmanipulated graft recipients: a potential role for CD8+ T-cell modulation by carbon monoxide. Transplantation 2009. 88: 653661.
  • 12
    Li, M., Peterson, S., Husney, D., Inaba, M., Guo, K., Kappas, A., Ikehara, S. et al., Long-lasting expression of HO-1 delays progression of type I diabetes in NOD mice. Cell Cycle 2007. 6: 567571.
  • 13
    Soares, M. P., Lin, Y., Anrather, J., Csizmadia, E., Takigami, K., Sato, K., Grey, S. T. et al., Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat. Med. 1998. 4: 10731077.
  • 14
    Herrada, A. A., Llanos, C., Mackern-Oberti, J. P., Carreno, L. J., Henriquez, C., Gomez, R. S., Gutierrez, M. A. et al., Heme oxygenase 1 expression is altered in monocytes from patients with systemic lupus erythematosus. Immunology 2012. 136: 414424.
  • 15
    Remy, S., Blancou, P., Tesson, L., Tardif, V., Brion, R., Royer, P. J., Motterlini, R. et al., Carbon monoxide inhibits TLR-induced dendritic cell immunogenicity. J. Immunol. 2009. 182: 18771884.
  • 16
    Kotsch, K., Martins, P. N., Klemz, R., Janssen, U., Gerstmayer, B., Dernier, A., Reutzel-Selke, A. et al., Heme oxygenase-1 ameliorates ischemia/reperfusion injury by targeting dendritic cell maturation and migration. Antioxid. Redox Signal 2007. 9: 20492063.
  • 17
    Listopad, J., Asadullah, K., Sievers, C., Ritter, T., Meisel, C., Sabat, R. and Docke, W. D., Heme oxygenase-1 inhibits T cell-dependent skin inflammation and differentiation and function of antigen-presenting cells. Exp. Dermatol. 2007. 16: 661670.
  • 18
    Simon, T., Pogu, S., Tardif, V., Rigaud, K., Remy, S., Piaggio, E., Bach, J. M. et al., Carbon monoxide-treated dendritic cells decrease beta1-integrin induction on CD8(+) T cells and protect from type 1 diabetes. Eur. J. Immunol. 2013. 43: 209218.
  • 19
    Basha, G., Omilusik, K., Chavez-Steenbock, A., Reinicke, A. T., Lack, N., Choi, K. B. and Jefferies, W. A., A CD74-dependent MHC class I endolysosomal cross-presentation pathway. Nat. Immunol. 2012. 13: 237245.
  • 20
    Burgdorf, S., Kautz, A., Bohnert, V., Knolle, P. A. and Kurts, C., Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science 2007. 316: 612616.
  • 21
    Harding, C. V. and Geuze, H. J., Immunogenic peptides bind to class II MHC molecules in an early lysosomal compartment. J. Immunol. 1993. 151: 39883998.
  • 22
    Basha, G., Lizee, G., Reinicke, A. T., Seipp, R. P., Omilusik, K. D. and Jefferies, W. A., MHC class I endosomal and lysosomal trafficking coincides with exogenous antigen loading in dendritic cells. PLoS One 2008. 3: e3247.
  • 23
    Burgdorf, S., Scholz, C., Kautz, A., Tampe, R. and Kurts, C., Spatial and mechanistic separation of cross-presentation and endogenous antigen presentation. Nat. Immunol. 2008. 9: 558566.
  • 24
    Neefjes, J. and Sadaka, C., Into the intracellular logistics of cross-presentation. Front. Immunol. 2012. 3: 16.
  • 25
    Chow, A., Toomre, D., Garrett, W. and Mellman, I., Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature 2002. 418: 988994.
  • 26
    Inaba, K., Turley, S., Iyoda, T., Yamaide, F., Shimoyama, S., Reis e Sousa, C., Germain, R. N. et al., The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J. Exp. Med. 2000. 191: 927936.
  • 27
    Vieira, O. V., Bucci, C., Harrison, R. E., Trimble, W. S., Lanzetti, L., Gruenberg, J., Schreiber, A. D. et al., Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase. Mol. Cell. Biol. 2003. 23: 25012514.
  • 28
    Wang, T., Ming, Z., Xiaochun, W. and Hong, W., Rab7: role of its protein interaction cascades in endo-lysosomal traffic. Cell Signal. 2011. 23: 516521.
  • 29
    Tjelle, T. E., Brech, A., Juvet, L. K., Griffiths, G. and Berg, T., Isolation and characterization of early endosomes, late endosomes and terminal lysosomes: their role in protein degradation. J. Cell Sci. 1996. 109(Pt 12): 29052914.
  • 30
    Compeer, E. B., Flinsenberg, T. W., van der Grein, S. G. and Boes, M., Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation. Front. Immunol. 2012. 3: 1111.
  • 31
    Kovacsovics-Bankowski, M. and Rock, K. L., A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 1995. 267: 243246.
  • 32
    Gromme, M., Uytdehaag, F. G., Janssen, H., Calafat, J., van Binnendijk, R. S., Kenter, M. J., Tulp, A. et al., Recycling MHC class I molecules and endosomal peptide loading. Proc. Natl. Acad. Sci. USA 1999. 96: 1032610331.
  • 33
    Lizee, G., Basha, G., Tiong, J., Julien, J. P., Tian, M., Biron, K. E. and Jefferies, W. A., Control of dendritic cell cross-presentation by the major histocompatibility complex class I cytoplasmic domain. Nat. Immunol. 2003. 4: 10651073.
  • 34
    Sugita, M. and Brenner, M. B., Association of the invariant chain with major histocompatibility complex class I molecules directs trafficking to endocytic compartments. J. Biol. Chem. 1995. 270: 14431448.
  • 35
    Harding, C. V. and Geuze, H. J., Class II MHC molecules are present in macrophage lysosomes and phagolysosomes that function in the phagocytic processing of Listeria monocytogenes for presentation to T cells. J. Cell. Biol. 1992. 119: 531542.
  • 36
    Dani, A., Chaudhry, A., Mukherjee, P., Rajagopal, D., Bhatia, S., George, A., Bal, V. et al., The pathway for MHC II-mediated presentation of endogenous proteins involves peptide transport to the endo-lysosomal compartment. J. Cell Sci. 2004. 117: 42194230.
  • 37
    Turley, S. J., Inaba, K., Garrett, W. S., Ebersold, M., Unternaehrer, J., Steinman, R. M. and Mellman, I., Transport of peptide-MHC class II complexes in developing dendritic cells. Science 2000. 288: 522527.
  • 38
    Trombetta, E. S., Ebersold, M., Garrett, W., Pypaert, M. and Mellman, I., Activation of lysosomal function during dendritic cell maturation. Science 2003. 299: 14001403.
  • 39
    Herrada, A. A., Contreras, F. J., Tobar, J. A., Pacheco, R. and Kalergis, A. M., Immune complex-induced enhancement of bacterial antigen presentation requires Fcgamma receptor III expression on dendritic cells. Proc. Natl. Acad. Sci. USA 2007. 104: 1340213407.
  • 40
    Riquelme, S. A., Bueno, S. M. and Kalergis, A. M., IgG keeps virulent Salmonella from evading dendritic cell uptake. Immunology 2012. 136: 291305.
  • 41
    Stein, M. P., Dong, J. and Wandinger-Ness, A., Rab proteins and endocytic trafficking: potential targets for therapeutic intervention. Adv. Drug Delivery Rev. 2003. 55: 14211437.
  • 42
    Clemens, D. L., Lee, B. Y. and Horwitz, M. A., Mycobacterium tuberculosis and Legionella pneumophila phagosomes exhibit arrested maturation despite acquisition of Rab7. Infect. Immun. 2000. 68: 51545166.
  • 43
    Bueno, S. M., Riquelme, S., Riedel, C. A. and Kalergis, A. M., Mechanisms used by virulent Salmonella to impair dendritic cell function and evade adaptive immunity. Immunology 2012. 137: 2836.
  • 44
    Riquelme, S. A., Wozniak, A., Kalergis, A. M. and Bueno, S. M., Evasion of host immunity by virulent Salmonella: implications for vaccine design. Curr. Med. Chem. 2011. 18: 56665675.
  • 45
    Wang, Y., Chen, T., Han, C., He, D., Liu, H., An, H., Cai, Z. et al., Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. Blood 2007. 110: 962971.
  • 46
    Progida, C., Cogli, L., Piro, F., De Luca, A., Bakke, O. and Bucci, C., Rab7b controls trafficking from endosomes to the TGN. J. Cell Sci. 2010. 123: 14801491.
  • 47
    Yang, M., Chen, T., Han, C., Li, N., Wan, T. and Cao, X., Rab7b, a novel lysosome-associated small GTPase, is involved in monocytic differentiation of human acute promyelocytic leukemia cells. Biochem. Biophys. Res. Commun. 2004. 318: 792799.
  • 48
    Guermonprez, P., Saveanu, L., Kleijmeer, M., Davoust, J., Van Endert, P. and Amigorena, S., ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 2003. 425: 397402.
  • 49
    Houde, M., Bertholet, S., Gagnon, E., Brunet, S., Goyette, G., Laplante, A., Princiotta, M. F. et al., Phagosomes are competent organelles for antigen cross-presentation. Nature 2003. 425: 402406.
  • 50
    Ackerman, A. L., Kyritsis, C., Tampe, R. and Cresswell, P., Early phagosomes in dendritic cells form a cellular compartment sufficient for cross presentation of exogenous antigens. Proc. Natl. Acad. Sci. USA 2003. 100: 1288912894.
  • 51
    Ackerman, A. L., Kyritsis, C., Tampe, R. and Cresswell, P., Access of soluble antigens to the endoplasmic reticulum can explain cross-presentation by dendritic cells. Nat. Immunol. 2005. 6: 107113.
  • 52
    Desjardins, M., ER-mediated phagocytosis: a new membrane for new functions. Nat. Rev. Immunol. 2003. 3: 280291.
  • 53
    Wan, Y., Wu, Y., Zhou, J., Zou, L., Liang, Y., Zhao, J., Jia, Z. et al., Cross-presentation of phage particle antigen in MHC class II and endoplasmic reticulum marker-positive compartments. Eur. J. Immunol. 2005. 35: 20412050.
  • 54
    Yates, R. M. and Russell, D. G., Phagosome maturation proceeds independently of stimulation of toll-like receptors 2 and 4. Immunity 2005. 23: 409417.
  • 55
    Shiratsuchi, A., Watanabe, I., Takeuchi, O., Akira, S. and Nakanishi, Y., Inhibitory effect of toll-like receptor 4 on fusion between phagosomes and endosomes/lysosomes in macrophages. J. Immunol. 2004. 172: 20392047.
  • 56
    Guermonprez, P. and Amigorena, S., Pathways for antigen cross presentation. Springer Semin. Immunopathol. 2005. 26: 257271.
  • 57
    Tamura, T., Ariga, H., Kinashi, T., Uehara, S., Kikuchi, T., Nakada, M., Tokunaga, T. et al., The role of antigenic peptide in CD4+ T helper phenotype development in a T cell receptor transgenic model. Int. Immunol. 2004. 16: 16911699.
  • 58
    Venkataswamy, M. M., Baena, A., Goldberg, M. F., Bricard, G., Im, J. S., Chan, J., Reddington, F. et al., Incorporation of NKT cell-activating glycolipids enhances immunogenicity and vaccine efficacy of Mycobacterium bovis bacillus Calmette-Guerin. J. Immunol. 2009. 183: 16441656.
  • 59
    Lu, A., Tebar, F., Alvarez-Moya, B., Lopez-Alcala, C., Calvo, M., Enrich, C., Agell, N. et al., A clathrin-dependent pathway leads to KRas signaling on late endosomes en route to lysosomes. J. Cell Biol. 2009. 184: 863879.
  • 60
    Li, Q., Lau, A., Morris, T. J., Guo, L., Fordyce, C. B. and Stanley, E. F., A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. J. Neurosci. 2004. 24: 40704081.