• 1
    Das, R., Sant’Angelo, D. B. and Nichols, K. E., Transcriptional control of invariant NKT cell development. Immunol. Rev. 2010. 238: 195215.
  • 2
    Gapin, L., Matsuda, J. L., Surh, C. D. and Kronenberg, M., NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat. Immunol. 2001. 2: 971978.
  • 3
    Lantz, O. and Bendelac, A., An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD48 T cells in mice and humans. J. Exp. Med. 1994. 180: 10971106.
  • 4
    Kreslavsky, T., Savage, A. K., Hobbs, R., Gounari, F., Bronson, R., Pereira, P., Pandolfi, P. P. et al., TCR-inducible PLZF transcription factor required for innate phenotype of a subset of gammadelta T cells with restricted TCR diversity. Proc. Natl. Acad. Sci. USA 2009. 106: 1245312458.
  • 5
    Besin, G., Yousefi, M., Saba, I., Klinck, R., Pandolfi, P. P. and Duplay, P., Dok-1 overexpression promotes development of gammadelta natural killer T cells. Eur. J. Immunol. 2012. 42: 24912504.
  • 6
    Alonzo, E. S. and Sant’Angelo, D. B., Development of PLZF-expressing innate T cells. Curr. Opin. Immunol. 2011. 23: 220227.
  • 7
    Godfrey, D. I. and Berzins, S. P., Control points in NKT-cell development. Nat. Rev. Immunol. 2007. 7: 505518.
  • 8
    Pereira, P. and Boucontet, L., Innate NKTgammadelta and NKTalphabeta cells exert similar functions and compete for a thymic niche. Eur. J. Immunol. 2012. 42: 12721281.
  • 9
    Narayan, K., Sylvia, K. E., Malhotra, N., Yin, C. C., Martens, G., Vallerskog, T., Kornfeld, H. et al., Intrathymic programming of effector fates in three molecularly distinct gammadelta T cell subtypes. Nat. Immunol. 2012. 13: 511518.
  • 10
    Yin, C. C., Cho, O. H., Sylvia, K. E., Narayan, K., Prince, A. L., Evans, J. W., Kang, J. et al., The Tec kinase ITK regulates thymic expansion, emigration, and maturation of gammadelta NKT cells. J. Immunol. 2013. 190: 26592669.
  • 11
    Kovalovsky, D., Uche, O. U., Eladad, S., Hobbs, R. M., Yi, W., Alonzo, E., Chua, K. et al., The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat. Immunol. 2008. 9: 10551064.
  • 12
    Savage, A. K., Constantinides, M. G., Han, J., Picard, D., Martin, E., Li, B., Lantz, O. et al., The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 2008. 29: 391403.
  • 13
    Lee, Y. J., Jameson, S. C. and Hogquist, K. A., Alternative memory in the CD8 T cell lineage. Trends Immunol. 2011. 32: 5056.
  • 14
    Dutta, M., Kraus, Z. J., Gomez-Rodriguez, J., Hwang, S. H., Cannons, J. L., Cheng, J., Lee, S. Y. et al., A role for ly108 in the induction of promyelocytic zinc finger transcription factor in developing thymocytes. J. Immunol. 2013. 190: 21212128.
  • 15
    Seiler, M. P., Mathew, R., Liszewski, M. K., Spooner, C., Barr, K., Meng, F., Singh, H. et al., Elevated and sustained expression of the transcription factors Egr1 and Egr2 controls NKT lineage differentiation in response to TCR signaling. Nat. Immunol. 2012. 13: 264271.
  • 16
    Matsuda, J. L. and Gapin, L., Developmental program of mouse Valpha14i NKT cells. Curr. Opin. Immunol. 2005. 17: 122130.
  • 17
    Sintes, J., Cuenca, M., Romero, X., Bastos, R., Terhorst, C., Angulo, A. and Engel, P., Cutting edge: Ly9 (CD229), a SLAM family receptor, negatively regulates the development of thymic innate memory-like CD8+ T and invariant NKT cells. J. Immunol. 2013. 190: 2126.
  • 18
    Williams, J. A., Lumsden, J. M., Yu, X., Feigenbaum, L., Zhang, J., Steinberg, S. M. and Hodes, R. J., Regulation of thymic NKT cell development by the B7-CD28 costimulatory pathway. J. Immunol. 2008. 181: 907917.
  • 19
    Chung, Y., Nurieva, R., Esashi, E., Wang, Y. H., Zhou, D., Gapin, L. and Dong, C., A critical role of costimulation during intrathymic development of invariant NK T cells. J. Immunol. 2008. 180: 22762283.
  • 20
    Zheng, X., Zhang, H., Yin, L., Wang, C. R., Liu, Y. and Zheng, P., Modulation of NKT cell development by B7-CD28 interaction: an expanding horizon for costimulation. PLoS ONE 2008. 3: e2703.
  • 21
    Alonzo, E. S., Gottschalk, R. A., Das, J., Egawa, T., Hobbs, R. M., Pandolfi, P. P., Pereira, P. et al., Development of promyelocytic zinc finger and ThPOK-expressing innate gamma delta T cells is controlled by strength of TCR signaling and Id3. J. Immunol. 2010. 184: 12681279.
  • 22
    Thomas, S. Y., Scanlon, S. T., Griewank, K. G., Constantinides, M. G., Savage, A. K., Barr, K. A., Meng, F. et al., PLZF induces an intravascular surveillance program mediated by long-lived LFA-1-ICAM-1 interactions. J. Exp. Med. 2011. 208: 11791188.
  • 23
    Gadue, P. and Stein, P. L., NK T cell precursors exhibit differential cytokine regulation and require Itk for efficient maturation. J. Immunol. 2002. 169: 23972406.
  • 24
    Benlagha, K., Kyin, T., Beavis, A., Teyton, L. and Bendelac, A., A thymic precursor to the NK T cell lineage. Science 2002. 296: 553555.
  • 25
    Verykokakis, M., Boos, M. D., Bendelac, A. and Kee, B. L., SAP protein-dependent natural killer T-like cells regulate the development of CD8(+) T cells with innate lymphocyte characteristics. Immunity 2010. 33: 203215.
  • 26
    Weinreich, M. A., Odumade, O. A., Jameson, S. C. and Hogquist, K. A., T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells. Nat. Immunol. 2010. 11: 709716.
  • 27
    Sharma, A., Chen, Q., Nguyen, T., Yu, Q. and Sen, J. M., T cell factor-1 and beta-catenin control the development of memory-like CD8 thymocytes. J. Immunol. 2012. 188: 38593868.
  • 28
    Min, H. S., Lee, Y. J., Jeon, Y. K., Kim, E. J., Kang, B. H., Jung, K. C., Chang, C. H. et al., MHC class II-restricted interaction between thymocytes plays an essential role in the production of innate CD8+ T cells. J. Immunol. 2011. 186: 57495757.
  • 29
    Ohara, J. and Paul, W. E., Up-regulation of interleukin 4/B-cell stimulatory factor 1 receptor expression. Proc. Natl. Acad. Sci. USA 1988. 85: 82218225.
  • 30
    Emoto, M., Mittrucker, H. W., Schmits, R., Mak, T. W. and Kaufmann, S. H., Critical role of leukocyte function-associated antigen-1 in liver accumulation of CD4+NKT cells. J. Immunol. 1999. 162: 50945098.
  • 31
    Ohteki, T., Maki, C., Koyasu, S., Mak, T. W. and Ohashi, P. S., Cutting edge: LFA-1 is required for liver NK1.1+TCR alpha beta+ cell development: evidence that liver NK1.1+TCR alpha beta+ cells originate from multiple pathways. J. Immunol. 1999. 162: 37533756.
  • 32
    Astrakhan, A., Ochs, H. D. and Rawlings, D. J., Wiskott-Aldrich syndrome protein is required for homeostasis and function of invariant NKT cells. J. Immunol. 2009. 182: 73707380.
  • 33
    Badour, K., McGavin, M. K., Zhang, J., Freeman, S., Vieira, C., Filipp, D., Julius, M. et al., Interaction of the Wiskott-Aldrich syndrome protein with sorting nexin 9 is required for CD28 endocytosis and cosignaling in T cells. Proc. Natl. Acad. Sci. USA 2007. 104: 15931598.
  • 34
    Dickgreber, N., Farrand, K. J., van Panhuys, N., Knight, D. A., McKee, S. J., Chong, M. L., Miranda-Hernandez, S. et al., Immature murine NKT cells pass through a stage of developmentally programmed innate IL-4 secretion. J. Leukoc. Biol. 2012. 92: 9991009.
  • 35
    Rafei, M., Rouette, A., Brochu, S., Ruiz Vanegas, J. and Perreault, C., Differential effects of gammac-cytokines on post-selection differentiation of CD8 thymocytes. Blood. 2013. 121: 107117.
  • 36
    Horai, R., Mueller, K. L., Handon, R. A., Cannons, J. L., Anderson, S. M., Kirby, M. R. and Schwartzberg, P. L., Requirements for selection of conventional and innate T lymphocyte lineages. Immunity 2007. 27: 775785.
  • 37
    Felices, M. and Berg, L. J., The Tec kinases Itk and Rlk regulate NKT cell maturation, cytokine production, and survival. J. Immunol. 2008. 180: 30073018.
  • 38
    Lertmemongkolchai, G., Cai, G., Hunter, C. A. and Bancroft, G. J., Bystander activation of CD8+ T cells contributes to the rapid production of IFN-gamma in response to bacterial pathogens. J. Immunol. 2001. 166: 10971105.
  • 39
    Berg, R. E., Crossley, E., Murray, S. and Forman, J., Memory CD8+ T cells provide innate immune protection against Listeria monocytogenes in the absence of cognate antigen. J. Exp. Med. 2003. 198: 15831593.
  • 40
    Hu, J., Sahu, N., Walsh, E. and August, A., Memory phenotype CD8+ T cells with innate function selectively develop in the absence of active Itk. Eur. J. Immunol. 2007. 37: 28922899.
  • 41
    Huang, W., Hu, J. and August, A., Cutting Edge: innate memory CD8 +T cells are distinct from homeostatic expanded CD8+ T cells and rapidly respond to primary antigenic stimuli. J. Immunol. 2013. 190: 24902494.