• 1
    Zhang, N. and Bevan, M. J., CD8(+) T cells: foot soldiers of the immune system. Immunity 2011. 35: 161168.
  • 2
    Hammarlund, E., Lewis, M. W., Hansen, S. G., Strelow, L. I., Nelson, J. A., Sexton, G. J., Hanifin, J. M. et al., Duration of antiviral immunity after smallpox vaccination. Nat. Med. 2003. 9: 11311137.
  • 3
    Perfetto, S. P., Chattopadhyay, P. K. and Roederer, M., Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 2004. 4: 648655.
  • 4
    Bendall, S. C., Simonds, E. F., Qiu, P., Amir el, A. D., Krutzik, P. O., Finck, R., Bruggner, R. V. et al., Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 2011. 332: 687696.
  • 5
    Bendall, S. C., Nolan, G. P., Roederer, M. and Chattopadhyay, P. K., A deep profiler's guide to cytometry. Trends Immunol. 2012. 33: 323332.
  • 6
    Appay, V., van Lier, R. A., Sallusto, F. and Roederer, M., Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A 2008. 73: 975983.
  • 7
    Sanders, M. E., Makgoba, M. W. and Shaw, S., Human naive and memory T cells: reinterpretation of helper-inducer and suppressor-inducer subsets. Immunol. Today 1988. 9: 195199.
  • 8
    Terry, L. A., Brown, M. H. and Beverley, P. C., The monoclonal antibody, UCHL1, recognizes a 180,000 MW component of the human leucocyte-common antigen, CD45. Immunology 1988. 64: 331336.
  • 9
    Cebrian, M., Carrera, A. D., De Landazuri, M. and Acevedo, A., In McMichael, A. (Ed.), Leukocyte typing, Oxford University Press, Oxford 1987, p. 823.
  • 10
    Merkenschlager, M., Terry, L., Edwards, R. and Beverley, P. C., Limiting dilution analysis of proliferative responses in human lymphocyte populations defined by the monoclonal antibody UCHL1: implications for differential CD45 expression in T cell memory formation. Eur. J. Immunol. 1988. 18: 16531661.
  • 11
    Akbar, A. N., Terry, L., Timms, A., Beverley, P. C. and Janossy, G., Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J. Immunol. 1988. 140: 21712178.
  • 12
    Yamada, A., Kaneyuki, T., Hara, A., Rothstein, D. M. and Yokoyama, M. M., CD45 isoform expression on human neonatal T cells: expression and turnover of CD45 isoforms on neonatal versus adult T cells after activation. Cell Immunol. 1992. 142: 114124.
  • 13
    Cossarizza, A., Ortolani, C., Paganelli, R., Barbieri, D., Monti, D., Sansoni, P., Fagiolo, U. et al., CD45 isoforms expression on CD4+ and CD8 +T cells throughout life, from newborns to centenarians: implications for T cell memory. Mech. Ageing Dev. 1996. 86: 173195.
  • 14
    Picker, L. J., Treer, J. R., Ferguson-Darnell, B., Collins, P. A., Buck, D. and Terstappen, L. W., Control of lymphocyte recirculation in man. I. Differential regulation of the peripheral lymph node homing receptor L-selectin on T cells during the virgin to memory cell transition. J. Immunol. 1993. 150: 11051121.
  • 15
    Picker, L. J., Treer, J. R., Ferguson-Darnell, B., Collins, P. A., Bergstresser, P. R. and Terstappen, L. W., Control of lymphocyte recirculation in man. II. Differential regulation of the cutaneous lymphocyte-associated antigen, a tissue-selective homing receptor for skin-homing T cells. J. Immunol. 1993. 150: 11221136.
  • 16
    Picker, L. J., Singh, M. K., Zdraveski, Z., Treer, J. R., Waldrop, S. L., Bergstresser, P. R. and Maino, V. C., Direct demonstration of cytokine synthesis heterogeneity among human memory/effector T cells by flow cytometry. Blood 1995. 86: 14081419.
  • 17
    Hamann, D., Baars, P. A., Rep, M. H., Hooibrink, B., Kerkhof-Garde, S. R., Klein, M. R. and van Lier, R. A., Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 1997. 186: 14071418.
  • 18
    Sallusto, F., Lenig, D., Forster, R., Lipp, M. and Lanzavecchia, A., Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999. 401: 708712.
  • 19
    Sallusto, F., Geginat, J. and Lanzavecchia, A., Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 2004. 22: 745763.
  • 20
    Stemberger, C., Neuenhahn, M., Gebhardt, F. E., Schiemann, M., Buchholz, V. R. and Busch, D. H., Stem cell-like plasticity of naive and distinct memory CD8+ T cell subsets. Semin. Immunol. 2009. 21: 6268.
  • 21
    Mueller, S. N., Gebhardt, T., Carbone, F. R. and Heath, W. R., Memory T cell subsets, migration patterns, and tissue residence. Annu. Rev. Immunol. 2013. 31: 137161.
  • 22
    Lanzavecchia, A. and Sallusto, F., Progressive differentiation and selection of the fittest in the immune response. Nat. Rev. Immunol. 2002. 2: 982987.
  • 23
    Turtle, C. J., Swanson, H. M., Fujii, N., Estey, E. H. and Riddell, S. R., A distinct subset of self-renewing human memory CD8+ T cells survives cytotoxic chemotherapy. Immunity 2009. 31: 834844.
  • 24
    Gattinoni, L., Lugli, E., Ji, Y., Pos, Z., Paulos, C. M., Quigley, M. F., Almeida, J. R. et al., A human memory T cell subset with stem cell-like properties. Nat. Med. 2011. 17: 12901297.
  • 25
    Dusseaux, M., Martin, E., Serriari, N., Peguillet, I., Premel, V., Louis, D., Milder, M. et al., Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 2011. 117: 12501259.
  • 26
    Havenith, S. H., Yong, S. L., Henson, S. M., Piet, B., Idu, M. M., Koch, S. D., Jonkers, R. E. et al., Analysis of stem-cell-like properties of human CD161++IL-18Ralpha +memory CD8+ T cells. Int. Immunol. 2012. 24: 625636.
  • 27
    Le Bourhis, L., Mburu, Y. K. and Lantz, O., MAIT cells, surveyors of a new class of antigen: development and functions. Curr. Opin. Immunol. 2013. 25: 174180.
  • 28
    Lugli, E., Dominguez, M. H., Gattinoni, L., Chattopadhyay, P. K., Bolton, D. L., Song, K., Klatt, N. R. et al., Superior T memory stem cell persistence supports long-lived T cell memory. J. Clin. Invest. 2013. 123: 594599.
  • 29
    Fagnoni, F. F., Vescovini, R., Passeri, G., Bologna, G., Pedrazzoni, M., Lavagetto, G., Casti, A. et al., Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging. Blood 2000. 95: 28602868.
  • 30
    Lugli, E., Pinti, M., Nasi, M., Troiano, L., Ferraresi, R., Mussi, C., Salvioli, G. et al., Subject classification obtained by cluster analysis and principal component analysis applied to flow cytometric data. Cytometry A 2007. 71: 334344.
  • 31
    Mahnke, Y. D., Beddall, M. H. and Roederer, M., OMIP-013: differentiation of human T-cells. Cytometry A 2012. 81: 935936.
  • 32
    Fritsch, R. D., Shen, X., Sims, G. P., Hathcock, K. S., Hodes, R. J. and Lipsky, P. E., Stepwise differentiation of CD4 memory T cells defined by expression of CCR7 and CD27. J. Immunol. 2005. 175: 64896497.
  • 33
    Okada, R., Kondo, T., Matsuki, F., Takata, H. and Takiguchi, M., Phenotypic classification of human CD4+ T cell subsets and their differentiation. Int. Immunol. 2008. 20: 11891199.
  • 34
    Picker, L. J., Reed-Inderbitzin, E. F., Hagen, S. I., Edgar, J. B., Hansen, S. G., Legasse, A., Planer, S. et al., IL-15 induces CD4 effector memory T cell production and tissue emigration in nonhuman primates. J. Clin. Invest. 2006. 116: 15141524.
  • 35
    Lugli, E., Goldman, C. K., Perera, L. P., Smedley, J., Pung, R., Yovandich, J. L., Creekmore, S. P. et al., Transient and persistent effects of IL15 on lymphocyte homeostasis in nonhuman primates. Blood 2010. 116: 32383248.
  • 36
    Romero, P., Zippelius, A., Kurth, I., Pittet, M. J., Touvrey, C., Iancu, E. M., Corthesy, P. et al., Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J. Immunol. 2007. 178: 41124119.
  • 37
    Henson, S. M. and Akbar, A. N., KLRG1–more than a marker for T cell senescence. Age (Dordr) 2009. 31: 285291.
  • 38
    Brenchley, J. M., Karandikar, N. J., Betts, M. R., Ambrozak, D. R., Hill, B. J., Crotty, L. E., Casazza, J. P. et al., Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 2003. 101: 27112720.
  • 39
    Di Mitri, D., Azevedo, R. I., Henson, S. M., Libri, V., Riddell, N. E., Macaulay, R., Kipling, D. et al., Reversible senescence in human CD4+CD45RA+CD27- memory T cells. J. Immunol. 2011. 187: 20932100.
  • 40
    Geginat, J., Lanzavecchia, A. and Sallusto, F., Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 2003. 101: 42604266.
  • 41
    Mahnke, Y. D., Greenwald, J. H., DerSimonian, R., Roby, G., Antonelli, L. R., Sher, A., Roederer, M. et al., Selective expansion of polyfunctional pathogen-specific CD4(+) T cells in HIV-1-infected patients with immune reconstitution inflammatory syndrome. Blood 2012. 119: 31053112.
  • 42
    Newell, E. W., Sigal, N., Bendall, S. C., Nolan, G. P. and Davis, M. M., Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 2012. 36: 142152.
  • 43
    Odumade, O. A., Knight, J. A., Schmeling, D. O., Masopust, D., Balfour, H. H., Jr. and Hogquist, K. A., Primary Epstein-Barr virus infection does not erode preexisting CD8(+) T cell memory in humans. J. Exp. Med. 2012. 209: 471478.
  • 44
    Stemberger, C., Huster, K. M., Koffler, M., Anderl, F., Schiemann, M., Wagner, H. and Busch, D. H., A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 2007. 27: 985997.
  • 45
    Kaech, S. M. and Cui, W., Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 2012. 12: 749761.
  • 46
    De Rosa, S. C., Herzenberg, L. A. and Roederer, M., 11-color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity. Nat. Med. 2001. 7: 245248.
  • 47
    Lugli, E., Gattinoni, L., Roberto, A., Mavilio, D., Price, D. A., Restifo, N. P. and Roederer, M., Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cells. Nat. Protoc. 2013. 8: 3342.
  • 48
    Vaccari, M. and Franchini, G., Memory T cells in rhesus macaques. Adv. Exp. Med. Biol. 2010. 684: 126144.
  • 49
    Berger, C., Jensen, M. C., Lansdorp, P. M., Gough, M., Elliott, C. and Riddell, S. R., Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J. Clin. Invest. 2008. 118: 294305.
  • 50
    Pitcher, C. J., Hagen, S. I., Walker, J. M., Lum, R., Mitchell, B. L., Maino, V. C., Axthelm, M. K. et al., Development and homeostasis of T cell memory in rhesus macaque. J. Immunol. 2002. 168: 2943.
  • 51
    Sathaliyawala, T., Kubota, M., Yudanin, N., Turner, D., Camp, P., Thome, J. J., Bickham, K. L. et al., Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 2013. 38: 187197.
  • 52
    Ley, K., Laudanna, C., Cybulsky, M. I. and Nourshargh, S., Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 2007. 7: 678689.
  • 53
    von Andrian, U. H. and Mackay, C. R., T-cell function and migration. Two sides of the same coin. N. Engl. J. Med. 2000. 343: 10201034.
  • 54
    Schaerli, P., Loetscher, P. and Moser, B., Cutting edge: induction of follicular homing precedes effector Th cell development. J. Immunol. 2001. 167: 60826086.
  • 55
    Schaerli, P., Willimann, K., Lang, A. B., Lipp, M., Loetscher, P. and Moser, B., CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 2000. 192: 15531562.
  • 56
    Breitfeld, D., Ohl, L., Kremmer, E., Ellwart, J., Sallusto, F., Lipp, M. and Forster, R., Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 2000. 192: 15451552.
  • 57
    Crotty, S., Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 2011. 29: 621663.
  • 58
    Sallusto, F. and Lanzavecchia, A., Heterogeneity of CD4+ memory T cells: functional modules for tailored immunity. Eur. J. Immunol. 2009. 39: 20762082.
  • 59
    Sallusto, F., Zielinski, C. E. and Lanzavecchia, A., Human Th17 subsets. Eur. J. Immunol. 2012. 42: 22152220.
  • 60
    Bonecchi, R., Bianchi, G., Bordignon, P. P., D'Ambrosio, D., Lang, R., Borsatti, A., Sozzani, S. et al., Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 1998. 187: 129134.
  • 61
    Nagata, K., Tanaka, K., Ogawa, K., Kemmotsu, K., Imai, T., Yoshie, O., Abe, H. et al., Selective expression of a novel surface molecule by human Th2 cells in vivo. J. Immunol. 1999. 162: 12781286.
  • 62
    Sigmundsdottir, H. and Butcher, E. C., Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking. Nat. Immunol. 2008. 9: 981987.
  • 63
    Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. and Sallusto, F., Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 2009. 10: 857863.
  • 64
    Trifari, S., Kaplan, C. D., Tran, E. H., Crellin, N. K. and Spits, H., Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat. Immunol. 2009. 10: 864871.
  • 65
    Eyerich, S., Eyerich, K., Pennino, D., Carbone, T., Nasorri, F., Pallotta, S., Cianfarani, F. et al., Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Invest. 2009. 119: 35733585.
  • 66
    Szabo, S. J., Kim, S. T., Costa, G. L., Zhang, X., Fathman, C. G. and Glimcher, L. H., A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000. 100: 655669.
  • 67
    Acosta-Rodriguez, E. V., Rivino, L., Geginat, J., Jarrossay, D., Gattorno, M., Lanzavecchia, A., Sallusto, F. et  al., Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 2007. 8: 639646.
  • 68
    Annunziato, F., Cosmi, L., Santarlasci, V., Maggi, L., Liotta, F., Mazzinghi, B., Parente, E. et al., Phenotypic and functional features of human Th17 cells. J. Exp. Med. 2007. 204: 18491861.
  • 69
    Lindestam Arlehamn, C. S., Gerasimova, A., Mele, F., Henderson, R., Swann, J., Greenbaum, J. A., Kim, Y. et al., Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6 +Th1 subset. PLoS Pathog. 2013. 9: e1003130.
  • 70
    Oseroff, C., Sidney, J., Vita, R., Tripple, V., McKinney, D. M., Southwood, S., Brodie, T. M. et al., T cell responses to known allergen proteins are differently polarized and account for a variable fraction of total response to allergen extracts. J. Immunol. 2012. 189: 18001811.
  • 71
    Rivino, L., Messi, M., Jarrossay, D., Lanzavecchia, A., Sallusto, F. and Geginat, J., Chemokine receptor expression identifies Pre-T helper (Th)1, Pre-Th2, and nonpolarized cells among human CD4+ central memory T cells. J. Exp. Med. 2004. 200: 725735.
  • 72
    Sallusto, F., Impellizzieri, D., Basso, C., Laroni, A., Uccelli, A., Lanzavecchia, A. and Engelhardt, B., T-cell trafficking in the central nervous system. Immunol. Rev. 2012. 248: 216227.
  • 73
    Zielinski, C. E., Corti, D., Mele, F., Pinto, D., Lanzavecchia, A. and Sallusto, F., Dissecting the human immunologic memory for pathogens. Immunol. Rev. 2011. 240: 4051.
  • 74
    Geiger, R., Duhen, T., Lanzavecchia, A. and Sallusto, F., Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. J. Exp. Med. 2009. 206: 15251534.
  • 75
    Brodie, T., Brenna, E. and Sallusto, F., OMIP-018: Chemokine receptor expression on human T helper cells. Cytometry A 2013. 83: 530532.
  • 76
    Willinger, T., Freeman, T., Hasegawa, H., McMichael, A. J. and Callan, M. F., Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets. J. Immunol. 2005. 175: 58955903.
  • 77
    Seder, R. A., Darrah, P. A. and Roederer, M., T-cell quality in memory and protection: implications for vaccine design. Nat. Rev. Immunol. 2008. 8: 247258.
  • 78
    Kalia, V., Sarkar, S., Subramaniam, S., Haining, W. N., Smith, K. A. and Ahmed, R., Prolonged interleukin-2Ralpha expression on virus-specific CD8 +T cells favors terminal-effector differentiation in vivo. Immunity 2010. 32: 91103.
  • 79
    Pipkin, M. E., Sacks, J. A., Cruz-Guilloty, F., Lichtenheld, M. G., Bevan, M. J. and Rao, A., Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 2010. 32: 7990.
  • 80
    Stefferl, A., Hopkins, S. J., Rothwell, N. J. and Luheshi, G. N., The role of TNF-alpha in fever: opposing actions of human and murine TNF-alpha and interactions with IL-beta in the rat. Br. J. Pharmacol. 1996. 118: 19191924.
  • 81
    Dinarello, C. A., Cytokines as endogenous pyrogens. J. Infect. Dis. 1999. 179(Suppl 2): S294S304.
  • 82
    Yang, L., Froio, R. M., Sciuto, T. E., Dvorak, A. M., Alon, R. and Luscinskas, F. W., ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood 2005. 106: 584592.
  • 83
    Bird, J. J., Brown, D. R., Mullen, A. C., Moskowitz, N. H., Mahowald, M. A., Sider, J. R., Gajewski, T. F. et al., Helper T cell differentiation is controlled by the cell cycle. Immunity 1998. 9: 229237.
  • 84
    Sridhar, S., Begom, S., Bermingham, A., Ziegler, T., Roberts, K. L., Barclay, W. S., Openshaw, P. et al., Predominance of heterosubtypic IFN-gamma-only-secreting effector memory T cells in pandemic H1N1 naive adults. Eur. J. Immunol. 2012. 42: 29132924.
  • 85
    Takata, H. and Takiguchi, M., Three memory subsets of human CD8+ T cells differently expressing three cytolytic effector molecules. J. Immunol. 2006. 177: 43304340.
  • 86
    Chattopadhyay, P. K., Betts, M. R., Price, D. A., Gostick, E., Horton, H., Roederer, M. and De Rosa, S. C., The cytolytic enzymes granyzme A, granzyme B, and perforin: expression patterns, cell distribution, and their relationship to cell maturity and bright CD57 expression. J. Leukoc. Biol. 2009. 85: 8897.
  • 87
    Tomiyama, H., Takata, H., Matsuda, T. and Takiguchi, M., Phenotypic classification of human CD8+ T cells reflecting their function: inverse correlation between quantitative expression of CD27 and cytotoxic effector function. Eur. J. Immunol. 2004. 34: 9991010.
  • 88
    Grossman, W. J., Verbsky, J. W., Tollefsen, B. L., Kemper, C., Atkinson, J. P. and Ley, T. J., Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 2004. 104: 28402848.
  • 89
    Appay, V., Zaunders, J. J., Papagno, L., Sutton, J., Jaramillo, A., Waters, A., Easterbrook, P. et al., Characterization of CD4(+) CTLs ex vivo. J. Immunol. 2002. 168: 59545958.
  • 90
    Zaunders, J. J., Dyer, W. B., Wang, B., Munier, M. L., Miranda-Saksena, M., Newton, R., Moore, J. et al., Identification of circulating antigen-specific CD4+ T lymphocytes with a CCR5+, cytotoxic phenotype in an HIV-1 long-term nonprogressor and in CMV infection. Blood 2004. 103: 22382247.
  • 91
    Casazza, J. P., Betts, M. R., Price, D. A., Precopio, M. L., Ruff, L. E., Brenchley, J. M., Hill, B. J. et al., Acquisition of direct antiviral effector functions by CMV-specific CD4+ T lymphocytes with cellular maturation. J. Exp. Med. 2006. 203: 28652877.
  • 92
    Nemes, E., Bertoncelli, L., Lugli, E., Pinti, M., Nasi, M., Manzini, L., Manzini, S. et al., Cytotoxic granule release dominates gag-specific CD4+ T-cell response in different phases of HIV infection. AIDS 2010. 24: 947957.
  • 93
    Soghoian, D. Z., Jessen, H., Flanders, M., Sierra-Davidson, K., Cutler, S., Pertel, T., Ranasinghe, S. et al., HIV-specific cytolytic CD4 T cell responses during acute HIV infection predict disease outcome. Sci. Transl. Med. 2012. 4: 123ra125.
  • 94
    Frentsch, M., Stark, R., Matzmohr, N., Meier, S., Durlanik, S., Schulz, A. R., Stervbo, U. et al., CD40L expression permits CD8+ T cells to execute immunologic helper functions. Blood 2013. 122: 405412.
  • 95
    Hernandez, M. G., Shen, L. and Rock, K. L., CD40-CD40 ligand interaction between dendritic cells and CD8+ T cells is needed to stimulate maximal T cell responses in the absence of CD4+ T cell help. J. Immunol. 2007. 178: 28442852.
  • 96
    Hazenberg, M. D., Stuart, J. W., Otto, S. A., Borleffs, J. C., Boucher, C. A., de Boer, R. J., Miedema, F. et al., T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood 2000. 95: 249255.
  • 97
    Scholzen, T. and Gerdes, J., The Ki-67 protein: from the known and the unknown. J. Cell Physiol. 2000. 182: 311322.
  • 98
    Klatt, N. R., Canary, L. A., Vanderford, T. H., Vinton, C. L., Engram, J. C., Dunham, R. M., Cronise, H. E. et al., Dynamics of simian immunodeficiency virus SIVmac239 infection in pigtail macaques. J. Virol. 2012. 86: 12031213.
  • 99
    Westera, L., Zhang, Y., Tesselaar, K., Borghans, J. A. and Macallan, D. C., Quantitating lymphocyte homeostasis in vivo in humans using stable isotope tracers. Methods Mol. Biol. 2013. 979: 107131.
  • 100
    Macallan, D. C., Wallace, D., Zhang, Y., De Lara, C., Worth, A. T., Ghattas, H., Griffin, G. E. et al., Rapid turnover of effector-memory CD4(+) T cells in healthy humans. J. Exp. Med. 2004. 200: 255260.
  • 101
    Vrisekoop, N., den Braber, I., de Boer, A. B., Ruiter, A. F., Ackermans, M. T., van der Crabben, S. N., Schrijver, E. H. et al., Sparse production but preferential incorporation of recently produced naive T cells in the human peripheral pool. Proc. Natl. Acad. Sci. USA 2008. 105: 61156120.
  • 102
    Westera, L., Drylewicz, J., den Braber, I., Mugwagwa, T., van der Maas, I., Kwast, L., Volman, T. et al., Closing the gap between T-cell life span estimates from stable isotope-labeling studies in mice and men. Blood 2013. 122: 22052212.
  • 103
    Restifo, N. P., Dudley, M. E. and Rosenberg, S. A., Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 2012. 12: 269281.
  • 104
    Holmes, S., He, M., Xu, T. and Lee, P. P., Memory T cells have gene expression patterns intermediate between naive and effector. Proc. Natl. Acad. Sci. USA 2005. 102: 55195523.
  • 105
    Riou, C., Yassine-Diab, B., Van grevenynghe, J., Somogyi, R., Greller, L. D., Gagnon, D., Gimmig, S. et al., Convergence of TCR and cytokine signaling leads to FOXO3a phosphorylation and drives the survival of CD4 +central memory T cells. J. Exp. Med. 2007. 204: 7991.
  • 106
    Mueller, Y. M., De Rosa, S. C., Hutton, J. A., Witek, J., Roederer, M., Altman, J. D. and Katsikis, P. D., Increased CD95/Fas-induced apoptosis of HIV-specific CD8(+) T cells. Immunity 2001. 15: 871882.
  • 107
    Russo, V., Bondanza, A., Ciceri, F., Bregni, M., Bordignon, C., Traversari, C. and Bonini, C., A dual role for genetically modified lymphocytes in cancer immunotherapy. Trends Mol. Med. 2012. 18: 193200.
  • 108
    Cieri, N., Camisa, B., Cocchiarella, F., Forcato, M., Oliveira, G., Provasi, E., Bondanza, A. et al., IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood 2013. 121: 573584.
  • 109
    Dominguez, M. H., Chattopadhyay, P. K., Ma, S., Lamoreaux, L., McDavid, A., Finak, G., Gottardo, R. et al., Highly multiplexed quantitation of gene expression on single cells. J. Immunol. Methods 2013. 391: 133145.
  • 110
    Buchholz, V. R., Flossdorf, M., Hensel, I., Kretschmer, L., Weissbrich, B., Graf, P., Verschoor, A. et al., Disparate individual fates compose robust CD8+ T cell immunity. Science 2013. 340: 630635.
  • 111
    Gerlach, C., Rohr, J. C., Perie, L., van Rooij, N., van Heijst, J. W., Velds, A., Urbanus, J. et al., Heterogeneous differentiation patterns of individual CD8+ T cells. Science 2013. 340: 635639.