Going Pro to enhance T-cell immunogenicity: Easy as π?


  • See accompanying article by Uchtenhagen et al.


MHC class I molecules bind intracellular oligopeptides and present them on the cell surface for CD8+ T-cell activation and recognition. Strong peptide/MHC class I (pMHC) interactions typically induce the best CD8+ T-cell responses; however, many immunotherapeutic tumor-specific peptides bind MHC with low affinity. To overcome this, immunologists can carefully alter peptides for enhanced MHC affinity but often at the cost of decreased T-cell recognition. A new report published in this issue of the European Journal of Immunology [Eur. J. Immunol. 2013. 43:3051–3060] shows that the substitution of proline at the third residue (p3P) of a common tumor peptide increases pMHC affinity and complex stability while enhancing T-cell receptor recognition. X-ray crystallography indicates that stability is generated through newly introduced CH-π bonding between p3P and a conserved residue (Y159) in the MHC heavy chain. This finding highlights a previously unappreciated role for CH-π bonding in MHC peptide binding, and importantly, arms immunologists with a novel and possibly general approach for increasing pMHC stability without compromising T-cell recognition.