SEARCH

SEARCH BY CITATION

Keywords:

  • Molecular precursor;
  • Sol–gel;
  • Nanoparticles;
  • Hybrids;
  • Titanium

Abstract

In situ amino acid surface-modified TiO2 nanoparticle syntheses were performed by a simple one-pot hydrolysis of heteroleptic titanium alkoxide [Ti(OiPr)3(O2CC6H4NH2)]m in water with NnBu4Br. This process allowed precise control of the surface grafting rate by varying the amount of precursors and provided highly functionalized nanomaterials. Their compositions and microstructures were determined by C, H and N elemental analyses, TGA-MS, 13C CP-MAS NMR, XRD, TEM, BET, Raleigh diffusion, FTIR, Raman, XPS and UV/Vis experiments. The results indicated that (i) the aggregation rate increased with an increase in the loading of the organic substrate and (ii) the amino acid is chemisorbed as a carboxylate group onto the TiO2 nanoparticles, which leads to a strong interaction between the amino acid and the TiO2 nanoparticle and good stability of these hybrids. Applications of low-aggregated nanomaterials were demonstrated as efficient protection additive against UVA + UVB radiations.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008)