Get access

Structural Flexibility and Sorption Properties of 2D Porous Coordination Polymers Constructed from Trinuclear Heterometallic Pivalates and 4,4′-Bipyridine

Authors

  • Ruslan A. Polunin,

    1. L. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of the Ukraine, Prospekt Nauki 31, Kiev 03028, Ukraine, Fax: +38-44-5256216
    Search for more papers by this author
  • Sergey V. Kolotilov,

    1. L. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of the Ukraine, Prospekt Nauki 31, Kiev 03028, Ukraine, Fax: +38-44-5256216
    Search for more papers by this author
  • Mikhail A. Kiskin,

    1. N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, GSP-1, Russian Federation, Fax: +7-495-9541279
    Search for more papers by this author
  • Olivier Cador,

    1. Equipe Organométalliques et Matériaux Moléculaires, Sciences Chimiques de Rennes, UMR UR1-CNRS 6226, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France, Fax: +33-2-23236840
    Search for more papers by this author
  • Stéphane Golhen,

    1. Equipe Organométalliques et Matériaux Moléculaires, Sciences Chimiques de Rennes, UMR UR1-CNRS 6226, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France, Fax: +33-2-23236840
    Search for more papers by this author
  • Oleksiy V. Shvets,

    1. L. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of the Ukraine, Prospekt Nauki 31, Kiev 03028, Ukraine, Fax: +38-44-5256216
    Search for more papers by this author
  • Lahcène Ouahab,

    1. Equipe Organométalliques et Matériaux Moléculaires, Sciences Chimiques de Rennes, UMR UR1-CNRS 6226, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France, Fax: +33-2-23236840
    Search for more papers by this author
  • Zhanna V. Dobrokhotova,

    1. N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, GSP-1, Russian Federation, Fax: +7-495-9541279
    Search for more papers by this author
  • Victor I. Ovcharenko,

    1. International Tomography Centre, Siberian Branch, Russian Academy of Sciences, Institutskaya str. 3a, 630090 Novosibirsk, Russian Federation, Fax: +7-383-3331399
    Search for more papers by this author
  • Igor L. Eremenko,

    1. N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, GSP-1, Russian Federation, Fax: +7-495-9541279
    Search for more papers by this author
  • Vladimir M. Novotortsev,

    1. N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, GSP-1, Russian Federation, Fax: +7-495-9541279
    Search for more papers by this author
  • Vitaly V. Pavlishchuk

    1. L. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of the Ukraine, Prospekt Nauki 31, Kiev 03028, Ukraine, Fax: +38-44-5256216
    Search for more papers by this author

Abstract

The temperature dependence of crystal structure parameters of isostructural coordination polymers Fe2MO(Piv)6(bipy)1.5·2DMF [2DMF and 2DMF, where M = NiII or CoII, respectively, Piv = (CH3)3CCO2, bipy = 4,4-bipyridine and DMF is N,N-dimethylformamide] was studied at five temperatures in the range from 120 to 296 K. The X-ray structure of the N,N-diethylformamide (DEF) solvate of the same coordination polymer 1, Fe2NiO(Piv)6(bipy)1.5·2DEF (2DEF), was studied at 173 and 260 K. Both the DMF and DEF solvates possess similar crystal structures, consisting of a series of parallel 2D polymeric layers with honeycomb voids. These series of parallel layers intersect, leading to their interpenetration and formation of zig-zag channels. It was found that the change of temperature and/or solvent molecule in the pores causes significant structural rearrangement associated with a change of the separation between parallel layers and the angle between intersecting layers. These structural changes lead to a variation of the calculated solvent-accessible volume from 0.21 cm3 g–1 (120 K, 2DMF) to 0.30 cm3 g–1 (260 K, 2DEF) for a probe molecule with r = 1.4 Å. These changes can model structural transformations which can occur at desolvation and adsorption of guests. Adsorption of n-hexane, n-octane, methanol and ethanol by Fe2MO(Piv)6(bipy)1.5 was studied. The sorption isotherms of alkanes were typical for microporous sorbents and in this case the behaviour of the coordination polymers resembled that which is typical for sorbents with a rigid structure. In a contrast, alcohol sorption capacity continuously grew at increasing pressure which may be caused by structural transformations, similar to temperature-induced structural transformations. Among the studied sorbates, sorption capacity grew in order methanol < ethanol < n-hexane < n-octane which may be caused by the hydrophobic nature of the channels (due to the presence of tert-butyl groups).

Get access to the full text of this article

Ancillary