• Bioinorganic chemistry;
  • Iron;
  • Enzyme models;
  • Tripodal ligands;
  • Phosphane ligands


Several monoiron(II) complexes containing tris(imidazolyl)phosphane (TIP) ligands have been prepared and structurally characterized by using X-ray crystallography and NMR spectroscopy. Two TIP ligands were employed: tris(2-phenylimidazol-4-yl)phosphane (4-TIPPh) and tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphane (2-TIPPh2). These tridentate ligands resemble the 3-histidine (3His) facial triad found recently in the active sites of certain nonheme iron dioxygenases. Three of the reported complexes are designed to serve as convenient precursors to species that model the enzyme–substrate intermediates of 3His dioxygenases; thus, each contains an [Fe(κ3-TIP)]2+ unit in which the remaining coordination sites are occupied by easily displaced ligands, such as solvent molecules and/or carboxylate groups. The viability of these complexes as precursors was demonstrated through the synthesis of TIP-based complexes with β-diketonate and salicylate ligands that represent faithful models of β-diketone dioxygenase and salicylate 1,2-dioxygenase, respectively.