• Nanoparticles;
  • Luminescence;
  • Solvent effects;
  • Rare earths;
  • Doping;
  • Yttrium­;
  • Vanadium


A facile solvothermal route has been developed for the preparation of tetragonal europium-doped yttrium orthovanadate nanoparticles (Eu:YVO4) and is based on a homogeneous precipitation reaction at 120 °C from solutions of rare earth precursors (yttrium acetylacetonate and europium nitrate) and sodium orthovanadate in ethylene glycol or ethylene glycol/water mixtures. The nature of the solvent has a dramatic effect on the morphology and crystallinity of the resulting nanoparticles. Polycrystalline nanoellipsoids (130 × 60 nm) were obtained in pure ethylene glycol, whereas quasispherical nanoparticles (100 nm) with monocrystalline character precipitated in ethylene glycol/water (7:3 by volume) mixtures. To explain these different morphological and structural features, the mechanism of particles formation was investigated. The effects of the doping level on the luminescence properties (emission spectra and luminescence lifetime) were also evaluated to find the optimum nanophosphors. Finally, it is shown that the luminescent efficiency of the quasispherical nanoparticles was higher than that of the nanoellipsoids; this can be related to differences in crystallinity and in impurity content.