Get access

On the Reactivity of Zinc Hydroxide Acetate Dihydrate in Ethanol

Authors


Abstract

Zinc hydroxide acetate dihydrate, Zn5(OH)8(CH3CO2)2·2H2O, reacts in ethanol at room temperature to yield a mixture of zinc oxide and anhydrous zinc acetate. The process is driven by dehydration of the starting salt. Dehydration of Zn5(OH)8(CH3CO2)2·2H2O also occurs when it is heated in air, but the product obtained in that case depends on the heating rate, environment and temperature. For example, when it is kept in a sealed silica capillary at 100 °C, Zn5(OH)8(CH3CO2)2·1.5H2O is formed after 15 min, whereas treatment in the range 90–100 °C in an open environment results in the formation of anhydrous zinc hydroxide acetate. Heating of any of these products further causes their decomposition to Zn(CH3CO2)2 and ZnO. The coordination bonding mode of the acetate groups in the anhydrous layered zinc hydroxide acetate prepared by reaction with ethanol was studied by using solid-state NMR spectroscopy. The presence of chelating, unidentate and bidentate bridging modes for the carbonyl carbon atom was revealed, but there was no evidence for the inclusion of ethanol in the resultant structure. Therefore, the reaction in ethanol offers a convenient strategy to prepare anhydrous zinc hydroxide acetate and/or zinc oxide, because it avoids the sensitivity of the thermally induced dehydroxlation process to time, temperature and environment.

Get access to the full text of this article

Ancillary